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M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Advanced Mechanics of Mechanical 

Systems  

Lectures: 

Professor Aki Mikkola, Ph.D., Lappeenranta University of Technology, Finland. 

Associate Professor Shaoping Bai, Ph.D., Aalborg University. 

Associate Professor Michael Skipper Andersen, Ph.D., Aalborg University. 

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Welcome to Aalborg University! 
• Venues 

 

 

 

 

• Bread and coffee will be served every morning.  

 

 

  

 

 

Fib. 14, room 59, Fib. 16, room 1.111, Canteen, No 2 Bus stop, Pizza place    

 

http://www.info.aaumap.portal.aau.dk/adresser 

 

 

• Bread and coffee will be served every morning.  

 

 

  

 

 

http://www.info.aaumap.portal.aau.dk/adresser
http://www.info.aaumap.portal.aau.dk/adresser
http://www.info.aaumap.portal.aau.dk/adresser
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M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Practical information 
• Food: 

• Rolls and coffee will be served every morning. 

• Cake and coffee will be served every afternoon. 

• Lunch: 

• Sandwishes, hot dishes and salad can be 

purchased in the AAU canteen. 

• Pizza, Pasta and more at Bella Italia. 

• Social event: 

• Dinner at a restaurant down town thursday the 

20th. More information will follow later.  

 

• Wireless internet: 

• Eduroam  

• Use your own credentials. 

• AAU-1-DAY. 

• New password every day. We will provide these 

for you. 
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Course outline 
Day 1: (Tue., 18/09):  Fundamentals of kinematics of 

rigid multi-body systems 

 M. S. Andersen (Fib. 14, Room 59 and Fib.16, Room 1.111)  

 

Day 2: (Wed., 19/09):  Dynamic modeling of rigid 

multi-body systems 

  S. Bai (Fib 14, Room 59) 

 

 Day 3:  (Fri., 21/09) Introduction to flexible system 

dynamics 

 A. Mikkola (Fib 14, Room 59) 

 

Workshop: (Fri. 20/06) Dynamic modeling with 

Adams 

 IdéPro (Fib 14, room 59) 

 NB! Bring your labtop for this part of the course  

 

 

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Multi-body mechanical system 

• A multi-body mechanical system consists of bodies, 

joints, actuators and loads. 

• The aim of the model is to either compute motion or 

forces. 

 

 



4 

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Degrees of freedom 

Degrees of freedom (DOF): are the independent ways of motion for 

a mechanical system. The number of DOF gives the minimum 

number of coordinates required to fully describe the motion. 

 

Counting the number of DOF 

 

 

 

 

 

Constraints that include motion information are called kinematic 

drivers and the number of these, we denote          .  

 

system)(planar     3

system) (spatial    6

joints

2D s,constraintbodiesDOF

joints

3D s,constraintbodiesDOF









nnn

nnn

Driversn

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Degrees of freedom 

Examples 

 

Slider-crank (2D): 

3 bodies x  3 DOF                       9 

3 revolute joints x 2 DOF           -6 

1 translational joint x 2 DOF      -2 

                                                    1 DOF 

 

4-bar linkage (2D): 

4 bodies x  3 DOF                       12 

6 revolute joints x 2 DOF           -12 

1 translational joint x 2 DOF          0   

                                                      0 DOF 

(One redundant constraint!) 
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Kinematic determinacy 

This type of system is the most general in dynamics of mechanical 

linkages, where we have to solve the second-order differential 

equations of motion. 

system ateindeterminlly Kinematica :0 DriversDOF  nn

system edeterminatlly Kinematica :0 DriversDOF  nn
This type of system is much easier to handle. The motion is 

completely prescribed by the drivers, implying that kinematics and 

kinetics are decoupled problems. 

A special case is when                                 , where the system is 

statically determinate. 

system edeterminat-overlly Kinematica :0 DriversDOF  nn

0 DriversDOF  nn

This type of system requires that deformations must be taken into 

account. 

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Kinematic analysis 

Kinematic analysis: 

• Analysis of the motion of a mechanical 

system without consideration of the forces 

that cause the motion. 

• Includes the description of the involved 

bodies, whether rigid or flexible, their 

connection (joints) and motion. 

• Aimed at computing the position, velocity and 

acceleration relationship between the 

involved bodies. 

• Analysis of a mechanical system purely 

based on kinematic information requires a 

kinematically determinate system. 
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Geometric vectors, denoted with an arrow:           

 

are vectors spanning between two points in space (either 2D or 3D). 

 

Algebraic vectors, denoted with an  underline: 

 

are arrays of numbers, which do not necessarily have a geometric 

interpretation. 

 

Skew-symmetric matrix of     :  

 

 

Cross-product:  

Math preliminaries 

kzjyixKZJYIXa




























0

0

0
~

XY

XZ

YZ

a

 ZYXa 

a

baba ~
Matrix-vector product 

Matrices are denoted with a double underline 

Reference frames 

• Global frame: The global frame is our main reference, 

i.e. the frame where we measure the absolute motion. 

• Local frame (body-fixed frame): A local frame is an 

assistive tool that allows us to consider parts of the 

motion separately if convenient. 

• A vector or point expressed in the global frame is 

called a global vector or point. 

• A vector or point expressed in the local frame is called 

a local vector or point. 
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Transformation matrix 

TT
AAIAA 

1
 and  

    '
aA
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x
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


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Local vector 

Transformation 

matrix 

Global vector 

Properties (orthonormal matrix): 

Inverse relationship: 

aAa
T


'

The time derivative of     : 

The transformation matrix: 

The transformation matrix in 2D 

  






 






cossin

sincos
jiA

Definition of the rotational coordinate in 2D is straight forward. 

The time derivative of     : 


























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cossin
        where

A
BBA 

A

B

     AB 
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Angular velocity vector 

sss  ~


u


 

Velocity of the vector     :  

It can be proven that the angular velocity 

vector is a geometric vector. I.e. for instance 

the relative angular velocity can be computed 

using vector differences. 

s


Rotational velocity 

Instantaneous rotation axis 

where      is angular velocity vector in local coordinates. 

Relationship between the transformation 

matrix and the angular velocity vector 

iii  ~ 


      '~~~~~~  AAkjikjikjiA  

This we are going to use when deriving constraint equations. 

Hereby, we can express the time-derivative 

of the transformation matrix:  

'


The velocity of the axis are: 

Assume that a body is rotating as described by the angular velocity 

vector,    . Hence, each axis is rotating. 


jjj  ~ 


kkk  ~ 

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Rotational coordinates in 3D 

• So far, we have described the 

orientation of the bodies by means 

of a rotation matrix and the 

angular velocity. 

• The rotation matrix: 9 parameters 

and 6 orthonormality constraints. 

• Other options: 

– Cardan angles.  

– Cartesian rotation vector. 

– Euler parameters. 

– And more. 

 

Rotational coordinates in 3D 

• Ideally, a good parametrization of rotation 

must: 

– Facilitate geometric interpretation. 

– Be convenient for algebraic 

manipulations. 

– Be as linear as possible in terms of 

the rotation angle(s). 

– Present a minimal (3) number of 

parameters. 

 

– Not lead to singularities: 

• in the definition. 

• in the inverse problem. 

• in the tangent matrix. 

• Notice that all rotational coordinates 

in 3D with only three parameters will 

always include a singularity. 

Computational advantages 

Theoretical advantages 
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Cardan angles 

• Rotation matrices for rotation around each axis: 

 

 

 

 

 

 

• Combined rotation matrix: 

 

 where l, m, n indicate the rotation axis and can 

be x, y, z. The rotation sequence is denoted l-

m-n.  

• The special cases: 

– z-x-z order is called Euler angles. 

– x-y-z order is called Bryant angles. 
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z-y-x sequence 

x-y-z sequence 

Cardan angles from transformation matrix 

• Rotation sequence z-y-x: 

 

 

 

• First compute the rotation angle around the y-axis 

(two possible solutions): 

 

• Then compute the other two angles for each of the 

two solutions of      :  

 

 

• Determine which of the two solutions to use. For 

instance using the solution that is closest to the 

solution from a previous time step (or which is 

closest to zero). 
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Cardan angles from transformation matrix 

• Adjust the angles by       until they are within a desired 

range – for instance to ensure that the computed 

angles are continuous over time. 

• NB! There are singularities for this particular rotation 

sequence, when 

•   

 

2

 ,...2,1   ,2/      0)cos( y nny 

Time-derivatives of Cardan angles and the 

angular velocity vector 
• Each component of the Cardan rotation sequence contributes 

towards the total angular velocity. 

• Relation to the global angular velocity vector: 

 

 

• Computed by transforming each velocity component into the 

global reference frame. 

 

• Relation to the local angular velocity vector. Obtained by pre-

multiplication by                    :  

 

 

 

 to bring the computation into the local reference frame. 
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
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Tangent matrix 
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Cardan angles 

• Advantages: 

– Minimal set of coordinates. 

– Nice geometric interpretation. 

 

• Disadvantages: 

– Depends on rotation sequence. 

– The rotation matrix involves 

numerous trigonomic functions. 

– Singularities for the inverse 

problem. 

Euler's theorem 

• Euler's theorem: The general 

displacement of a body with one point 

fixed is a rotation about some axis. 

 

• Rotational formula:  

 

 

  

 

 sin~)cos1)((cos
'''

susuuss
T


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Cartesian rotation vector 

 

 

 

 

• Rotation matrix: 

 

 

 

• Tangent matrix: 

 

 

 

• Angular velocity vector: 

 

u 

Rotation axis Rotation angle 

3 parameters 
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
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Cartesian rotation vector 

No singularity in the definition: 
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 00
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Singularity in the inverse 

problem: 

kIA  2   if   

cannot be determined u
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Cartesian rotation vector 

• Advantages: 

– Minimal set of coordinates. 

– Easy geometric interpretation. 

– Absence of singularities in the 

definition. 

– Simple linearized expressions. 

 

• Disadvantages: 

– Singularities for the inverse 

problem. 

 

Euler parameters 

• Definition: 

 

 

 

 

 

• The rotational formula: 
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
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Euler parameters 

• Setting     outside a bracket to obtain the 

transformation matrix: 

 

 

 

• Notice that the Euler parameters are not 

independent and must statisfy: 

 

 

• Also sometimes written: 

 

 

• where  
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Identities with Euler parameters 

 

 

 

 

• Transformation matrix: 

 

 

• Tangent matrix: 

 

 

• Angular velocity: 
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Euler parameters 

• Advantages: 

– No singularities! 

– Purely algebraic quantities, i.e. no 

trigonomic functions. 

 

• Disadvantages: 

– An extra constraint equations. 

– Difficult to drive. 

– More coordinates than strictly 

needed. 

 

 

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Open and closed loop systems 
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Open loop systems 

Open-loop systems with relative coordinates 

(minimal set): 

Open-loop systems can be handled fairly easy by 

defining coordinates associated with the DOF of each 

joint. These coordinates corresponds directly to the 

DOF of the system and any kinematic quantity can be 

computed directly from these.   

 

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Open loop systems 

Position analysis: 

 

Relative translation, joint coordinates and  

transformation matrix. 
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M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Closed-loop systems 

Closed-loop systems  

Closed-loop systems are more complicated. Typically, 

we get nonlinear equations, which cannot be handled 

analytically. We shall formulate this in a general 

manner that allows us to solve the equations 

numerically in a systematical way. 

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Method of appended driving constraints 

• Assemble the constraint equations, including 

drivers, into one system of nonlinear 

equations. 

• Position analysis: 

 

  

 where:        are the system coordinates. 

                    is time. 

0)),((  ttq

)(tq

t



19 

Slider-crank example 

 

Set up kinematic constraint equations for the slider-crank 

mechanism using the method of appended driving constraints. 

 

The kinematic driver equation is given as:   

      

tθ

1l

2l

Blackboard 

3D constraint equations 
 

 • Motion of a point in 3D space. 

• Constraint equations: 

• Spherical joint. 

• Two perpendicular vectors. 

• Two parallel vectors. 

• Universal joint. 

• Revolute joint. 

• Spherical-spherical joint. 

• Driver constraints. 
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3D constraint equations 
 

 • Motion of a point in 3D space. 

• Constraint equations: 

• Spherical joint. 

• Two perpendicular vectors. 

• Two parallel vectors. 

• Universal joint. 

• Revolute joint. 

• Spherical-spherical joint. 

• Driver constraints. 

 

 

 

 

Motion of a point in 3D space 

')(
sArsrr

P


Global coordinates of the point P: 
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Spherical joint constraints 

Position constraint: 

 

 
  0),(

'')3,(


P

jjj

P
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s
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Two perpendicular vectors (type I) 

Position constraint: 

 

 

0
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 j

T
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n
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

js


The two vectors,    and      have 

constant positions relative to the 

bodies. 

 

 

'
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'

js
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Two perpendicular vectors (type II) 

Position constraint: 

 

 

0
)1,2(

 ds
T

i

n

d


js


    has constant position relative to 

body i whereas     is defined between 

two points on the bodies. 

 

 

'

is

d

Alternatively, express two perpendicular 

vectors:   

 

 

 

These constraints are always valid, but 

require the definition of two new vectors. 

 

 

Two parallel vectors 

Position constraint: 

 

 

NB! This provides 3 constraints rather 

than two, so one of the three equations 

must be obmitted. 
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Revolute joint constraints 

Position constraint: 
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Universal joint constraints 

Position constraint: 
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Universal joint constraints 

Position constraint: 
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Spherical-spherical joint constraint 

Position constraint: 
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Many more joint constraints can 

be found in Nikravesh Section 

7.2. 
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Driver constraints 

Used to impose motion on the model. 

 

There must be as many driver constraints 

as model DOF for a kinematically 

determinate system. 

 

Position constraint: 

 

 

Example: 

 

 

 

0),(
)(

 tq
d

0)()(),(
)(

 tqtq
d Some property of the model is explicitly 

specified by the kinematic driver. E.g. a 

joint angle 

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Exercise 

Work on part 1 of the exercises.   
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Velocity and acceleration analysis  

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Method of appended driving constraints 

• Position analysis: 

 

  

  

0)),((  ttq
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Method of appended driving constraints 

• Velocity analysis: 

 

  

  

• The jacobian matrix and     : 

 

 

 

 

 

0),,(  tq qtqq 





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


















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i
q

q

t


























t

i
t

j'th column 

i'th row 

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Method of appended driving constraints 

Acceleration analysis: 

 

 

  

 

 

 

 

 
  





 ),,(

2

02),,,(

tqq

tttq
q

qq

tttq
q

qq

qqqq

qqqqtqqq






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Different position, velocity and acceleration 

coordinates 
It is sometimes desirable to use different 

coordinates for position analysis than for 

velocity and acceleration analysis. 

For instance with cartesian coordinates: 

 

 

Velocity analysis: 

 

Acceleration analysis: 

 

0),,( ˆ  tq vtvq

 ??ii
rq   'iii rv   'iii rv  

  02),,,( ˆ
ˆ

ˆˆ  tttq
q

qq vvvvtvvq 

Motion of a point in 3D space 

''''')( ~ sAsArsAsArr
P   

')(
sArsrr

P


Global coordinates of the point P: 

Velocity of the point P: 

'''''''')( ~2~~~ sAsAsAsArr
P   

Acceleration of the point P: Zero for rigid bodies 



29 

Spherical joint constraints 
Position constraint: 

 

 

Velocity constraint: 

 

 

 

 

 

Acceleration constraint: 
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Two perpendicular vectors (type I) 

Position constraint: 
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Velocity constraint: 
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Acceleration constraint: 
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The procedure is the same for the remaining 

constraint types. 

Slider-crank example 

 

Derive the Jacobian matrix and gamma vector for the slider-crank 

mechanism. 

 

      

1l

2l

Blackboard 
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Exercise 

Work on part 2 of the exercises.   

      

M. S. Andersen: Advanced Mechanics of Mechanical Systems 

Thanks for your attention! 


