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Day 2: Dynamics 
 
  

Part I: Multiple-rigid-body Dynamics 

• Newton-Euler Equation 
 

• Lagrange Equation 
 

• Numerical implementations 
 

• Formulations for improved performance 
 

• Other considerations 
 

S. Bai, Advanced Mechanics of Mechanical 
Systems 2 



Examples of dynamic modeling  

• Dynamic modeling of Hydrama 922D dump truck 

S. Bai, Advanced Mechanics of Mechanical 
Systems 3 

Dynamic modeling of HMF 
2420-K5  Knuckle Boom 
Loader 
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Fundamentals:  
Newton-Euler equations 

Translation equation for a body 
 
 
 
Rotational equation (Euler equation) 
 
 

Remarks: 
The linear acceleration by Newton 2nd law is given for center of mass. The linear 
acceleration changes within the rigid body.  
The linear acceleration is NOT dependent to linear velocity 
The angular acceleration IS dependent to the angular velocity  
The moment in Euler equation is taken about center of mass. NOT other points in 
the fixed frame. 

• In some cases, Euler equation can also be described in term of local 
components, i.e., 
 

 
• In this way, J’ is a constant. 

 
 
 
 

with
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Newton-Euler equation 

For a single body in a multibody system, its EOM is:

In matrix 
form

or 

Note: 1.    and f are in the same direction, but      and n are generally not

2. All local coordinates are established at their centers of mass

Motion equation of multiple unconstrained bodies (free body)
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(1.4) 

Newton-Eular equations 
• Assembly together the EOMs for all bodies 

 
 
 
 
 
 
 
 
 
 
 
 
 

• In short form 
 
 

 
• The equation  can be used in inverse dynamics, i.e., to find forces needed for a desired 

motion. 
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(1.5) 
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Dynamic analysis of a system: Lagrange multiplier approach 

• Eq. (1.3) is established on the basis of unconstrained bodies. In another word, we have to 
develop freebody diagrams to find out the reaction forces at each joint.  Alternatively, we can 
make use of Lagrange multipliers to include the constraint forces (internal) in the equation. 

Assume there are m kinematic constraint equations, let  

Then 

and

Lagrange multiplier

Dynamic equation with Lagrange multipliers:

In eq. (1.5) ,  the internal forces  
are not included explicitly.

1111 gbvM �
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(1.5) 
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Newton-Euler equation 

• Eq. (1.5) stands for (n+m) unknowns:   the n accelerations and m Lagrange multipliers. In 
order to have sufficient number of equations,  we have to supply m more equations. The 
acceleration equation can thus be used. 

• Assembly with acceleration equation: 
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extT gDbvM�
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Now the equation can be readily solved numerically. 

(1.6) 

vD�
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In matrix form 



Example 1 
• A multibody system with four spherical joints 
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Example 1 (cont’d) 

• Velocity and acceleration equations, taking the first constraint as an example 
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Matrix D of the system 

Make use of  
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Lagrange Equation (with independent coordinates) 

• Let the vector q represents a set of n unknown independent coordinates 
 

• Let T (q, q ) be the kinetic energy of the system, V(q) the potential energy and 
• The Lagrangian:                   L= T-V 
• Qex(q) the vector of generalized external forces (non conservative forces) acting along the 

dependent coordinates q of a constrained mechanical system.  
 

• The Lagrange equation of the first kind is  
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exLL
dt
d Q

qq� (1.7)

Lagrange Equation (with dependent coordinates) 
 

• Let the vector q represents a set of n unknown dependent coordinates, m is the total 
number of independent constraint equations (geometric and kinematic), and f=n-m is 
the number of dynamic degrees of freedom (dof). The constraint conditions are written 
in the following general form: 
 
 

• Let T (q, q ) be the kinetic energy of the system, V(q) the potential energy and 
• The Lagrange’s equations of the second kind: 

 
 
 

• The matrix q is the Jacobian matrix of the constraint equations (1.8) . The vector  in 
(1.8) defines the Lagrange multipliers. 

12

0q ),( t

(1.8)
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Example 2:  A 1-dof pendulum 
Formulation the equation of motoin 

 
• New-Euler equation  
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• Lagrange equation 
1. Kinetic enegry 

 
2. Potential energy 

 
3. Lagrangian funciton 

 
4. Lagrange equation 
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Numerical solutions 

• While there are many ways availalbe,  a convenient method is to convert them into DAE of 
first order. This implies that, given the first order derivatives of dependent variables at time t, 
we can use an integrator to find their new values for time t+ t.  

 
• Algorithm 

 
1.  start at a time t=t0 in which the position and velocity are known. 

 
2.  Use eq. (1.6) to solve the accelerations at time t=t0.  This step is referred as function 

evaluation 
 

3. Let                        , which can be used as input to an integrator of first order differential 
equations to get  
 
 

4. Update time t and go to step 2 
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Algorithm 

 
 
 
 
 
 

 
• Refer to appendix A (Nikravesh’s book) for the transformation between angular rates and 

angular velocities. For Euler angles of ZXZ convention, the transformation is 
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(1.9) 

(function evaluation) 

(vel. transformation ) 



Example 3. Dyanmic simulation 

• A falling-cross (matlab code is available at the course website) 
Assumptions: 
• Four metal balls connectted rigidly by rods 
• The impact of the cross on the ground is characterised with a spring constant and a damping 

coefficient 
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New formulation for improved stability 

• With the formulation given in  eq. (1.6), the problem of numerical stability raises.  The reason 
lies in the integration of diffential equation of the constraints. The general solution of this 
differential equation is unbounded, thus leading to unstable solutions. 
 

• Look at the second order of differential equation of the constraints 
 
 

• Its general solution is in a form of 
 

 where a1 and a2 depend on the initial conditions.  
 
• Solution in the above form is unbounded, making the system unstable. 

 
• A remedy to fix this problem is to mix the system of differential equations with algebraic 

equations (constraints) 
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(1.10) 

(1.11) 



Baumgarte Stabilization 

• This is a control theory based method. The idea is to enforce/impose the contraints at the 
acceleration level by adding the constaint equations in the differential equations as 
 

• where  and  are constants  
 

• The solution is now in a form of 
 
 

• with  
 

• If s1 and s2 are negative, the general solution is bounded, thus the stability is guaranteed.   
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(1.12) 

(1.13) 

(1.14) 

A new formulation 
• With the Baumgarte Stabilization method, the dynamic equation of a multibody system can 

be rewritten as 
 
 
 
 

• where 
 

• or     
 

• Remarks: 
– The constants  and , depending on the problem,  are usually set to equal values 

between 1 to 20. 
– The new formulation is simple---modifying simply the original differential equations,  

and computational efficient. 
– It has limitations, for example, in dealing with near-singularity configurations. 

• Further reading: Chapter 5, J. Jalon and E. Bayo, Kinematic and dynamic simulation of 
multibody systems. 
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Example 4: Numerical experiments 

• .We use the same example of our exercise (see slide next page) 
• The error is defined as the rms values of residuals of all constraint equations. 
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Example 2 
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Singularity-free dynamic equation solving 

• In the previous formulation, the system may likely reach a singular configuration, when the 
leading matrix becomes singular. 
 
 
 

• The consequence of a single position is kinematically a sudden change in the number of 
degrees of freedom, either lost or increases one or more degrees. In the numerical solving, 
the accelerations cannot be computed, the dyanmic simulation may either crash or lead to a 
large error. The near-singular configuration will lead to amplified round-off error and 
resulting erroneous solutions. 
 

• A simple way to deal with the singularity is to detect the ill-conditioning of the Jacobian and 
let the integrator step over it. 

• New formulations are available for robust solutions. One is the penalty-augmented 
Lagrangian formulation (ch. 10.6, Jalon’s book): 
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(1.18) 

Friction force (ch. 10.1, Jalon’s book) 
• Coulomb friction model 

 
 
 
 
 
 

• To incooperate with Coulomb friction, an additional item can be added to the equation of 
motion as 
 
 

With 
 
Where  is frictional coefficient, u(q)  is a matrix describing joint type and geometry 
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(1.19) 

(1.20) 



Impact and collisions 

• In certain cases, the dynamic modelling may get involved with impact and collisions. It is 
normally assumed that the duration of impact is very short and impact force is large, all other 
remaining forces can thus be neglected. Another assumption is the position of the system 
does not change during the impact, only velocity changes. 

• The equation of motion, dring the impact, is: 
 
 
 
 

• Where Pi is the integral effect of the impact force Qi, i.e. 
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(1.21) 

(1.22) 

Other considerations of dynamic modeling 

• Backlash (ch. 10.3) 
 
• In dynamic modeling, the complexity of the model depends on the problem. 
• Always start modeling from the basic model and validate. 
• Check errors of computation 

 
• The best validation is experiments, when applicable. 

 
 
 

Further reading: 
 

• P. E. Nikravesh, AN OVERVIEW OF SEVERAL FORMULATIONS FOR MULTIBODY DYNAMICS, D. 
Talab�  and T. Roche (eds.), Product Engineering, 189–226 
 
 
 
 

S. Bai, Advanced Mechanics of Mechanical 
Systems 26 



Part II. Gear Dynamics 

 Gear transmissions are commonly used mechanical systems. As a traditional subject of 
research and development, gear dynamics has been extensively studied over centuries.  
However, the demanding for high speed, large-scale transmissions in applications like high-
speed machining and wind turbines, poses new challenges for the design and analysis of gear 
transmissions. 

 
 This part of the lecture is aimed at providing an overview of theories for gear dynamics 

modeling.  The following contents are included: 
– Gear basics 
– Kinematics of gear transmissions 
– Rigid body gear dynamics 
– Flexible body gear dynamics  
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1. Gear basics 

• Gears are the most common means used for power transmission 
• They can be applied between two shafts which are 

– Parallel 
– Collinear 
– Perpendicular and intersecting 
– Perpendicular and nonintersecting 
– Inclined at any arbitrary angle 

1. Spur gears 
–  Most common used forms for parallel shafts 
– Suitable for low to medium speed application 
– Relatively high ratios can be achieved (< 7) 
– Steel, brass, bronze, cast iron, and plastics 

2. Helical gears 

– Teeth are at an angle---helix angle 
– Used for parallel shafts 
– Teeth engage gradually reducing shocks 
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1. Gear basics 

3. Bevel gears 
– They have conical shape 
– Used to change directions 
– Two axes are coplanar 

4. Worm gears 

– For large speed reductions: one turn of worm vs one  
teeth of gear  
– Transmission between two perpendicular 
 and non-intersecting shafts 
– One-way transmission 
– Two axes are not coplanar 

 
5. Rack and pinion 

– A rack is a gear whose pitch diameter is infinite 
– Used to convert rotary motion to straight line motion 
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Gear geometry 
• Root diameter  

– Diameter of the gear, measured at the base of the tooth. 
• Addendum circle (outer circle) 

 
– the circle that coincides with the tops of the teeth of a 

gear 
 

• Base circle: 
–  a circle of reference of gear teeth profile generation 

 
• pitch circle 

 
– An imaginary circle that is centered at gear center and 

passing the pitch point 
 

• Addendum and dedendum 
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rb 

Rb 

Gear geometry 
• Pitch point, p  

– Point where the line of action crosses a line 
joining the two gear axes. 

• Pitch circle, pitch line  
– Circle centered on and perpendicular to the axis, 

and passing through the pitch point. 
• Pitch diameter, d=m.N  

– Diameter of a pitch circle. Equal to twice the 
perpendicular distance from the axis to the pitch 
point (2R). The nominal gear size is usually the 
pitch diameter. 

• Module, m  
– The pitch diameter divided by the number of 

teeth. 
• Pressure angle,   
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Gear geometry 

• Line of action 
– A line or curve along which two tooth surfaces are tangent to each other. 
– A line where teeth engagement happens 

 
• Contact ratio  

– Ratio of the arc of action to the circular pitch 
 

– It stands for the average number of gear tooth pairs in contact on a pair of meshing 
gears.  
 

• Backlash:  
– The difference between the circle thickness of one gear and the tooth space of the 

mating gear  
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2. Gear Kinematics—on the relationships between gear 
dimension and motion 

• Gear ratio (GR): the ratio of number of teeth on driven gear  to the number of teeth on driver 
gear 
 
 

• Velocity ratio (VR): the ratio of the angular speed of the driver gear (gear 1) to the angular 
speed of the driven gear (gear 2) 

 
 
• Pitch line velocity: the velocity of the pitch point 

 
 
• More expressions of velocity ratio 
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Gear train kinematics 

• …. is a series of mating gearsets. 
• Train ratio (TR) is the product of all velocity ratios 

 
 
 
 

Planet gear trains 
• To find the TR, we first fix the arm, then 

 
 
 where relative angular velocities are 

 
• Thus 
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Pay attention to the direction of gear rotation 

Planet gear train and  
equivalent 2dof mechanism 
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Example: Analyzing of planetary gear train 
• Problem: determine the train ratio between the sun gear and the arm.  
• Given data: The sun has 40 teeth, the planet 20teeth, and the ring gear 80 teeth. The 

arm is the input and the sun is the output. The ring gear is held stationary. 
Solution:  
• We look at the gear train from the sun to the ring 

 
 
• That is  
 
• or 

 
• Hence  

armsun

armring

ring

planet

planet

sun

N
N

N
N ))((

armsun

arm0)
80
20)(

20
40(

1/
15.0
armsun

3/ armsunTR
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Rigid body gear dynamics 

• For a gear transmission shown in the figure 
 
 
 
 
 
 
 

• Reflected torque 
 

 
• Reflected moment of inertia: when viewed from the input gear 

 
 

• Equation of motion of gear trains 
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Example 
• Equation of motion of gear train 

 
 

• Where 
– Tm = maximum available motor peak torque 
– Jm = motor rotor inertia 
– JbR  = reflected moment of inertia of gearbox 
– TlR = reflected load torque, including frictional torque, for example,  TlR= 

TgR+MfR 

 
• The starting torque (acceleration torque plus steady torque) 

 
 

• The acceleration  
 
 
 

• Steady torque 
 
 
 
 
 

)( lRbRmlRm JJJTT

bRlRm
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 Basic nonlinear gear dynamics model 

A basic model 

0ukum me ��

Where: 
 equivalent mass  
      1

2
22

2
1

21

IRIR
IIm I

e

Transmission error    
2211 RRu

In dyanmic modeling, the following problems need to be sovled 
1. Periodic gear meshing force 
2. Determination of meshing stiffness 
3. Influence of variance such as backlash 

 
 

Governing eq. 
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(3.1) 

(3.2) 

(3.3) 

3. Gear dynamics with flexible bodies 



Other types of model 
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Typical model for a  gear train 

Mathematical models used in gear dynamics—A review,  H. Nevzat Özgüven and D.R. House, Journal of 
Sound and Vibration , Vol 121,  Issue 3, 22 March 1988, Pages 383-411
OPTIMIZATION METHODS FOR SPUR GEAR DYNAMICS, Marco Barbieri, et al., proc. ENOC 2008, Saint 
Petersburg, Russia, June, 30–July, 4 2008

A comprehensive model. 
 z  

phase angle. The composite error es is the 
sum of tooth errors of the pinion and 
gears. 
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Gear modeling 
 
 
 
 
The meshing force calculation has to consider the 
engagement situations: 

1. positive working condition, a situation in which 
driving gear drives driven gear.  

2. negative working condition. In such a situation, a 
driven gear is in contact with the backside of the 
driving gear. 

3. non engagement.  
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In dyanmic modeling, the following problems need to be sovled 
1. Discontinuous gear meshing force 
2. Determination of peroidic  meshing stiffness 
3. Influence of variance such as backlash 

 
 



Model of meshing force with backlash 

• The meshing force is also subject to backlash(clearance) 

41 
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Gear meshing stiffness, ref. [4] 
• The stiffness at a point j is 

 
 

 where yB is the deformation due to beam effect and yL 
is that due to surface contact, which can be calculated by 

 
 
 
With 
 
 
 
 
 
 
where Ii is the area moment of inertia of the i-th element 

and Si is the cross-section area of the teeth at element i, 
and W is tooth width 
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(3.4) 



Gear meshing stiffness (cont’d) 
• The effective modulus of elasticity Ee is defined to take into account of the influence of width 

of the teeth profile, which is 
 
 

 where E is the material’s Young modulus and v is the Poisson's ratio. 
• The stiffness of the gear meshing is the inverse of combined compliance of two gears at the 

engaging position 
 
 
 
 
 
 

• Alternatively, the meshing stiffness can be determined through FEA 
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(3.5) 

Case Study: Model with flexible gear teeth and shaft [5] 

Assumptions: 
• consisting of one pair of spur gears 
• include geometric variations like backlash 

 
 
 
 

 where 
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Case study (cont’d) 
. 
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By introducing the dynamic transmission errors, and relative rotations, we can 
eliminate one degree of freedom 
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Case Study (cont’d) 
Simulaitons: Nonlinearity analysis 

• Frequency response 

46 

Nonllinearity is weakened with the decreasing of shaft 
torsional stiffness 
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Case study (cont’d) 
 Load-sharing simulation 
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Time history with identical input 
torques 

Time history with slightly different input 
torques 

The load-sharing is not sensitive 
to difference between the input 
torques 
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