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1 INTRODUCTION 

Simulation is an abstract theme which can be used to describe an imitative action of a real system. 

In this paper, simulation is comprised of a computer-aided approach to analyze complex mechanical 

systems such as mobile and industrial machines. A common feature of these machines is that they 

include mechanical components as well as various actuators and control schemes. In order to 

simulate  a  mechanical  system  using  computers,  a  mathematical  description  of  the  system  –  a  

simulation model – needs to be formulated. The simulation model may include sub-models such as 

hydraulic, pneumatic or electrical drives. These actuators are usually important in terms of the 

dynamic performance of the machines. 

   

1.1 Overview of multibody system dynamics 

A multibody system consists of rigid and flexible bodies, joint constraints that couple the bodies, 

and power components describing dampers, springs and actuators. Depending on the components 

needed for the multibody model, the dynamic behavior of the system can be described by a system 

of equations consisting of differential and nonlinear algebraic equations. In a historical timeline, 

multibody system analysis has been developed based on the achievements of classical mechanics, 

which is generally divided into two branches. In the first branch, which can be referred to as the 

direct approach to dynamics, force and momentum are considered as the primary parameters in 

differential equations of motion. This form of dynamical equation can be directly derived by 

employing the approach of Newton and Euler. The second branch is called the indirect or 

variational approach where forces that perform no work can be neglected. D’Alembert studied a set 

of rigid bodies introducing the concept of virtual work. In order to make the concept mathematically 

consistent, Lagrange utilized the results of d’Alembert, making possible the systematic analysis of a 

constrained particle system. Subsequently, the invention of digital computers made it possible to 

reformulate these achievements, leading to multibody formalisms in the 1960s [1]. Probably the 

best-known method in the field of multibody dynamics is the method of Lagrange multipliers, 

which can be derived from the variational approach. When Newton-Euler equations are used, the 

linear and angular momentum principles can be utilized directly in formulating equations of motion, 

whereas the free body principle can be used to solve the reaction forces due to the constraints. 

However, the use of free body diagrams in large systems is laborious, making the approach 

vulnerable to human error. Fortunately, the Newton-Euler equations can be derived from the 

Lagrange equation using the variational approach and the centroidal body reference frame. 
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Accordingly, constraints can be taken into account by applying the Lagrange multiplier theorem to 

the variational form of Newton-Euler equations [1].  

 

Flexible multibody dynamics 

Multibody dynamics analyses frequently require that structural flexibility is accounted for in order 

to reliably predict the dynamic behavior of slender structures under a heavy load. It is noteworthy 

that  even  though  the  topological  structure  of  models  remains  unchanged  in  the  case  of  rigid  and  

flexible bodies, the modeling of systems with flexible bodies is remarkably challenging regardless 

of the method used for describing the flexibility [2]. 

 

Common techniques to describe the elasticity of the bodies are the lumped mass technique and the 

floating frame of reference formulation. In the lumped mass technique, the body is divided into 

rigid segments which are interconnected by force elements. The method is easy to implement in 

simulation software based on the multibody approach due to the fact that each segment can be 

treated as a rigid body. However, after segmentation, each flexible body contains several rigid 

bodies increasing the degrees of the freedom of the system. In practice, the method can be used to 

describe beam type bodies. In this thesis, structural flexibility is accounted for by using the floating 

frame of reference formulation. In the method, the generalized coordinates that define the 

configuration of the flexible body can be divided into ones that describe the position and orientation 

of the reference coordinate system and ones that describe deformations with respect to the reference 

coordinate system. In the floating frame of reference formulation, deformations are usually 

described using methods based on the finite element approach. The first general purpose 

implementation of the floating frame of reference formulation applicable to large flexible multibody 

systems in planar cases was introduced by Song and Haug [3]. They used nodal coordinates from 

finite element discretization to describe deformations. Nevertheless, in that study, the 

implementation was cumbersome especially for geometrically complex bodies, leading to 

computationally expensive equations of motion due to a need for a large number of nodal 

coordinates. To reduce the number of coordinates related to flexibility, Shabana [4] extended the 

floating frame of reference formulation to three-dimensional mechanisms, and proposed the use of 

component mode synthesis to extract the structural vibration modes. In this way, the set of nodal 

coordinates from the finite element method can be replaced by a lower number of modal 

coordinates, making the numerical solution of the equations of motion more efficient. However, the 

general purpose application of the approach was impeded because elements used in the modeling of 
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flexible bodies were included in the solution algorithm leading to element-specific volume integrals 

to be solved. Yoo and Haug [5, 6] introduced the use of static correction modes in order to account 

for local deformations due to joint constraints and force components. The advantage of the method 

is that it allows vibration and static correction modes to be solved directly using commercial finite 

element software. 

 

Constraint modeling 

Creating a general-purpose multibody algorithm that takes structural flexibility into account is a 

challenging endeavor. One of the most difficult tasks in the implementation is to create a 

component library, which is needed for taking kinematic joint constraints into consideration. 

References [7, 8] introduce an approach which models joint constraints by using virtual bodies. In 

this approach, the constraint equations are developed between massless rigid bodies. The advantage 

of this approach is its applicability to be used in different descriptions of flexibility. On the other 

hand, adding virtual bodies increases the computation time compared to methods which derive joint 

constraints individually for each approach to describing flexibility. The formulation of kinematic 

joints  composed  of  simple  basic  constraints  in  the  case  of  systems  of  rigid  bodies  has  been  

discussed in References [9, 10]. The basic constraint equations for modeling spherical, universal 

and revolute joints between flexible bodies have been presented in Reference [5]. Shabana [11, 12] 

has introduced an approach based on intermediate body fixed joint coordinate systems which are 

rigidly attached to joint definition points. In this approach, the joint coordinate systems are used to 

derive basic constraint equations including sliding joints with the assumption that the joint axis can 

be described as a rigid line. Cardona [13] has introduced the finite element approach for mechanical 

joints, which can be integrated into finite element software. In Reference [14], the basic joint 

constraints were used in the context of topological multibody formulation. Hwang [15] has 

presented basic constraint types used with translational joint models which account for the 

deformation of the axis line. Hwang used the floating frame of reference approach accounting for 

multiple contact points, whereas the numerical results are only shown in the case of a single contact 

point. 

   

In order to be able to employ traditional solvers for the Ordinary Differential Equation (ODE) 

within the system of equations, the constraint equations must be differentiated twice with respect to 

time. It is important to note that in previous literature, the terms of the Jacobian matrix and terms 

that are related to second time differentials of basic constraint equations are not explicitly presented. 
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In order to alleviate the development of modular simulation, the components that are required to 

take constraints into account need to be obtained.  

 

 

2 MODELING OF MULTIBODY SYSTEMS USING THE REFERENCE 

FRAME APPROACH 

The method of the floating frame of reference is the method most frequently applied to describe 

linear deformations in multibody applications. This is due to the computational efficiency of the 

method  and  the  possibility  to  utilize  commercial  finite  element  software  to  define  properties  of  

flexible bodies. In this chapter, the floating frame of reference approach with three different 

descriptions of equations of motion is briefly introduced. 

   

2.1 Spatial kinematics of a flexible body 

The floating frame of reference formulation can be applied to bodies that experience large rigid 

body translations and rotations as well as elastic deformations. The method is based on describing 

deformations of a flexible body with respect to a frame of reference. The frame of reference, in turn, 

is employed to describe large translations and rotations. The deformations of a flexible body with 

respect to its frame of reference can be described with a number of methods, whereas in this study, 

deformation is described using linear deformation modes of the body. Deformation modes can be 

defined using a finite element model of the body. Fig. 1 illustrates the position of particle iP  in a 

deformed body i.  
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Figure 1. The position of the particle iP  in global coordinate system.  

The  position  of  particle  iP  of  the  flexible  body  i can  be  described  in  a  global  coordinate  system  

using the vector 
iPr  as follows: 

iP
f

iP
0

iiiPiiiP uuRuRr AA , (1) 

where iR  is the position vector of the frame of reference, Ai is the rotation matrix of body i, iPu  is 

the position vector of particle iP  within the frame of reference, 
iP

0u  is the undeformed position 

vector of the particle within the frame of reference, and 
iP

fu  is the displacement of particle iP  

within the frame of reference due to the deformation of body i. In this study, the rotation matrix Ai 

is expressed using Euler parameters 
T

3210

T iEiEiEiEiE  in order to avoid singular 

conditions which are a problem when three rotational parameters are used, such as in the cases of 

Euler and Bryant angles [16]. The rotation matrix can be written using Euler parameters as follows: 
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(2) 

The following mathematical constraint must be taken into consideration when Euler parameters are 

applied:  
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The deformation vector 
iP

fu  can be described using a linear combination of the deformation modes 

as follows: 

i
f

iP
R

iP
f qu , (4) 

where 
iP

R  is  the  modal  matrix  whose  columns  describe  the  translation  of   particle  iP  within the 

assumed deformation modes of the flexible body i [11], and i
fq is the vector of elastic coordinates. 

Consequently, the generalized coordinates that uniquely define the position of point iP  can be 

represented with vector ip  as follows: 

T
TTTT i

f
iEii qRp . 

(5) 

The velocity of particle iP  can be obtained by differentiating the position description (Eq. 1) with 

respect to time as follows:  

i
f

iP
R

iii
f

iP
R

iP
0

iiiP qq~u~Rr AA , (6) 

where i  is the vector of local angular velocities. In Eq. 6, the generalized velocity vector can be 

defined as follows: 
TTTTT i

f
iii qRq . (7) 

By differentiating Eq. (6) with respect to time, the following formulation for the acceleration of 

particle iP can be obtained:  
iPiiPiiiPiiiPiiiiiP uu~u

~
u~~Rr AAAA 2 , (8) 

where i~  is a skew-symmetric representation of the angular velocity of the body in the frame of 

reference, iR  is the vector that defines the translational acceleration of the frame of reference, 
iPiii u~~A  is the normal component of acceleration, iPii u

~
A  is the tangential component of 

acceleration, iPii u~A2  is the Coriolis component of acceleration and iPi uA  is the acceleration of 

particle iP  due to the deformation of body i.  

 

When deformation modes are used with the floating frame of reference, rotations due to body 

deformation are usually ignored. However, in order to compose all of the basic constraints, rotation 
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due to body deformation must be accounted for. The vector i
fv  due to deformation at the location of 

particle iP  within the frame of reference can be expressed as follows: 

iiP
f

i
f vv A , (9) 

where iv  is defined in the undeformed state at the location of particle iP , and 
iP

fA  is a rotation 

matrix that describes the orientation due to deformation at the location of particle iP  with respect to 

the reference frame. Note that all components in Eq. 9 are expressed in the reference frame. The 

rotation matrix 
iP

fA  can be expressed as follows:  

iPiP
f

~IA , (10) 

where I  is  a  ( 33 ) identity matrix and iP~  is  a  skew  symmetric  form  of  the  rotation  change  

caused by deformation. Rotation changes due to deformation can be represented in the following 

way:  

i
f

iPiP q , (11) 

where 
iP  is the modal transformation matrix whose columns describe rotation coordinates of 

point iP  within the assumed deformation modes of the flexible body i [11], and i
fq is the vector of 

elastic coordinates.  

 

2.2 Virtual work 

The equations of motion can be developed using the principle of virtual work, which can be written 

for inertia forces as follows:   

iV

iiPiPiii dVW rr
T

, (12) 

where 
iPr  is  the  virtual  displacement  of  the  position  vector  of  a  particle,  

iPr  is the acceleration 

vector of the particle defined in Eq 8, i  is density of body i,  and   iV  is volume of body i. 

Accordingly, the virtual displacement of the position vector can be expressed in terms of virtual 

displacement of generalized coordinates as follows: 

TT

TTTTTT

iiP
R

iiPi
f

iiiP

A
A

I
u~qRr , 

 

(13) 
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where i  is virtual rotation. By substituting the virtual displacement of the position vector (13) 

into the equation of virtual work of the inertial forces (12) and by separating the terms related to 

acceleration from the terms related quadratically to velocities, the following equation for the virtual 

work of inertial forces can be obtained: 

iviiiiiW Qqq M , 
(14) 

where Mi is the mass matrix and 
ivQ  is the quadratic velocity vector. The mass matrix can be 

expressed as follows:  

iV

i

iP
R

iP
R

iP
R

iPiPiP

iP
R

iiPi

ii dV

sym

AAI

M
T

TT
u~u~u~

u~

. 

 

(15) 

And, correspondingly, the quadratic velocity vector takes the form  

iV

i

i
f

iP
R

iiP
R

iPiiiP
R

i
f

iP
R

iiPiPiiiP

i
f

iP
R

iiiPiii

iiv dV

q~u~~
q~u~u~~u~

q~u~~

Q

AA

TT

TT

2

2

2

 

 

(16) 

The virtual work of the externally applied forces can be written as: 
iei

V

iiPiPie

i

dVW QqFr
TT

, (17) 

where 
iPF  is external force per unit mass and 

ieQ  is the vector of generalized forces which can be 

expressed as follows:  

i
j

i
n

j

i
j

n

j

i
j

ii
j

n

j

i
j

ie

F

F

F

F

Fu~

F

Q

T

1

T

1

T

1

A

A  

(18) 

where i
jF  is the j-th force component acting on body i, i

ju~  is  a  skew  symmetric  matrix  of  the  

location vector of the j-th force components, and i
j  is the terms of the modal matrix associated 

with the node to which the j-th force component applies.  
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The elastic forces can be defined using the modal stiffness matrix iK  and modal coordinates. The 

modal stiffness matrix is associated with the modal coordinates and the matrix can be obtained from 

the conventional finite element approach using the component mode synthesis technique [11]. The 

virtual work of elastic forces can be written as follows: 

i
f

ii
f

isW qq K
T

. (19) 

Accordingly, the vector of elastic forces can be represented as follows:  

i
f

i

if

q
Q

K
0
0

. 

 

(20) 

Using Eqs. 14, 17 and 19, the equation of virtual work including inertial, external and internal force 

components can be written as follows: 

0
ieifiviii QQQqq M . (21) 

The terms inside the brackets can be used to form unconstrained Newton-Euler equations as 

follows: 

i
f

i

i

V

i
f

iP
R

iiP
R

iPiiiP
R

i

i

V

i
f

iP
R

iiPiPiiiPi

i

V

i
f

iP
R

iiiPiiii

i

V

iPiiP
R

i

V

iPiiP

i

V

iP

i
f

i

i

i

V

iP
R

iP
R

i

i

V

iP
R

iPii

V

iPiPi

i

V

iP
R

iiiiPi

V

ii

V

i

dV

dV

dV

dV

dV

dV

dVsym

dVdV

dVdVdV

i

i

i

i

i

i

i

ii

iii

q
q~u~~

q~u~u~~u~

q~u~~

F

Fu~

F

q

R
u~u~u~

u~

K

AA

A

A

AAI

0
0

2

2

2

TT

TT

TT

T

T

TT

 

 

(22) 

Equations of motion in this form are referred to as Generalized Newton-Euler equations in 

Reference [11], where Newton-Euler equations of rigid bodies are extended to flexible bodies. 

2.2.1 Integration of the equations of motion 

Due to the use of Generalized Newton-Euler equations as a description of dynamics, the equations 

of motion are expressed using the angular velocity and angular acceleration vectors. Eq. 22 can be 

solved for angular accelerations in the body frame which can be integrated with angular velocities. 
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However, the problem arises when the coordinates describing the orientation of the body have to be 

solved. This is due to the fact that angular velocities cannot be directly integrated with the 

parameters which uniquely describe the orientation of the body. For this reason, a new set of 

variables p  is defined, containing the orientation coordinates of the body reference frame. In order 

to integrate the position level coordinates, the first time derivative of Euler parameters and the 

vector of angular velocities defined in the body reference frame can be related through the 

following linear expression: 

iiiE T
2
1 G , (23) 

where the velocity transformation matrix iG  can be written as follows:  

iEiEiEiE

iEiiEiE

iEiEiEiE

i

0123

1032

2301

G . 

 

(24) 

The time derivatives of the body variables to be intergrated can be stated using vector p  as follows: 

T
TTTT i

f
iEii qRp , 

(25) 

which can be integrated to obtain position level generalized coordinates p . 

 

2.3 Description of multibody equations of motion 

In this section, the three multibody formalisms used in this work are briefly described. The 

formalisms discussed here are the method based on Lagrange multipliers, which is also referred to 

as the descriptor form [17, 11], the penalty and augmented Lagrangian methods [18, 19] and the 

method based on projection matrix [20, 21, 22].   

2.3.1 Method of Lagrange multipliers 

When constraint equations are augmented to equations of motion using the Lagrange multiplier 

technique, the result can be written as:    
fve QQQq q

TCM , (26) 

where q is the vector of n generalized coordinates that define the position and orientation of each 

body in the system, M is the mass matrix, eQ  is  the  vector  of  generalized  forces,   vQ  is the 

quadratic velocity vector that includes velocity dependent inertia forces, qC  is the Jacobian matrix 
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of the constraint equations, fQ  is the vector of elastic forces and  is the vector of Lagrange 

multipliers. To satisfy a set of m constraint equations related to generalized coordinates, the 

following equation must be fulfilled:   

0tq,C , (27) 

where C  is a vector of constraints of the system and t is time. Eqs. (26) and (27) comprise a system 

of differential algebraic equations (DAE) which describe the dynamical behavior of the mechanics. 

In order to solve the set of equations using ordinary integration methods for differential equation 

(ODE),  the  equations  must  be  transformed  to  the  second  order  ODE.  For  this  reason,  Eq.  (27)  is  

differentiated twice with respect to time:  

0C c,t,, QqqqqC q , (28) 

where cQ  includes velocity dependent terms due to differentation. By combining Eqs. (26) and 

(28), the matrix representation of equations of motion can be obtained as follows: 

c

fve

Q
QQQq

q

q

0C
CM T

, (29) 

where the invertable matrix is of the size nmnm . The equation of motion can be integrated 

using the standard ODE solver [11]. However, equations of motion cannot guarantee that constraint 

equations in Eq. (27) are satisfied. This is due to the fact that during the differentiation of a 

constraint  equation,  constant  terms  disappear,  and  consequently,  Eq.  (29)  fulfils  the  constraints  at  

acceleration level only. Therefore, numerical integration causes errors to accumulate in the 

kinematic joint constraints. To overcome this problem, a stabilization method must be used. 

Another possibility to solve this problem is to use methods which produce a general solution to 

differential algebraic equations [19, 23]. 

2.3.2 Augmented Lagrangian method 

In the penalty method, Lagrange multipliers are eliminated from the equations of motion by 

employing penalty terms. This procedure leads to a set of n differential equations as follows: 

CCQQQQq qqq
2TT 2CCCM cfve , (30) 

where ,  and  are mm  diagonal matrices which contain penalty terms, natural frequencies 

and damping ratios for constraints, respectively. If the penalty terms are equivalent to each 

constraint, the matrices are identity matrices multiplied with a constant penalty factor.  
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A drawback associated with the penalty method is that large numerical values for penalty factors 

must be used, which may lead to numerical ill-conditioning and round-off errors. However, the 

method can be improved by adding penalty terms or correction terms which are zero when 

constraint  equations  are  fulfilled.  Using  this  approach,  equations  of  motion  can  be  written  as  

follows: 

CCQQQQq qqqq
T2TT 2 CCCCM cfve , (31) 

where  is the vector of penalty forces. By comparing Eqs. (1) and (31), it can be concluded that

   

CCQqq
22C c . (32) 

Since  the  exact  values  of   are  not  known  in  advance,  an  iterative  procedure  should  be  used  as  

follows: 

CCQqq
2

1 2C c
iii , (33) 

where 00  is used for the first iteration. Using this equation, the forces caused by errors in 

constraint equations at iteration i+1 can be defined and compensated. In this case, the penalty terms 

do not need to have large numerical values. An iterative procedure can be applied directly to Eq 

(31), which leads to the following expression: 

CCQqq qqq
2T

1
T 2CMCCM c

ii . (34) 

In the case of the first iteration, fve QQQq0M . The leading matrix of Eq. (34) is a symmetric 

and positive definite, which makes the solution of the equation efficient. This formulation behaves 

satisfactorily also in singular configurations of a mechanical system.  

2.3.3 Method based on projection matrix 

The two previously introduced formulations define the equations of motion using a complete set of 

generalized coordinates. However, the number of the equations can be reduced to the minimum 

number of differential equations using a set of independent generalized coordinates. Independent 

generalized velocities iq  can be defined as a projection of velocities of generalized coordinates q  

using matrix B as follows: 

qq Bi . (35) 
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It is noteworthy that the rows of matrix B are  linearly  independent.  For  skleronomous  systems,  a  

solution to describe the transformation from independent generalized coordinates to a complete set 

of generalized coordinates is available and can be defined using transformation matrix R as follows: 

iqq R . (36) 

Using coordinate partitioning to dependent dq  and independent iq  generalized coordinates, vector 

q  can be written in the partitioned form 
TTT

id qqq . The virtual change of generalized 

coordinates with respect to constraint equations can be expressed as follows: 

0CC id id
qq qq , (37) 

where 
dqC  and 

iqC  are partitioned Jacobian matrices.
dqC is a m x m matrix where m is the number 

of constraint equations. Using Eq. (37), the virtual change of dependent generalized coordinates can 

be defined as: 

id id
qq qq CC 1 . (38) 

The virtual change of generalized coordinates can now be expressed using independent generalized 

coordinates as follows: 

i
i

d id q
q
q

q qq

I
CC 1

. (39) 

Correspondingly, the transformation matrix R can be expressed as follows:   

I
CCR id qq

1

. (40) 

Using coordinate partitioning, accelerations of generalized coordinates can be written as follows: 

q
q
q

q qq
i

1

I
CC

id

i

d  (41) 

with the definition 

0

1
tttd

Cqqq qqqq 2CCC . (42) 

It can be seen that vector  consist  of  the  accelerations  of  generalized  coordinates  when  the  

accelerations of independent coordinates are equal to zero. Using  Eq. (42), Eq. (41) can be written 

as follows: 

qq iR . (43) 

Substitution of the result into Eq. (26) leads to: 



 

 

 

 

14 

0RMRMRR fve
i QQQq TTT . (44) 

This equation of motion can be solved for independent accelerations which can be integrated to 

solve the new independent velocities and positions for the next time step. This form of equation of 

motion is complicated and highly nonlinear and the set of independent generalized coordinates must 

be changed every time when the pivot of 
dqC  approaches zero. 

 

2.4 Kinematic joint description 

In this section, geometric constraint equations are derived for three basic constraint components, 

which can be further applied to the modeling of spherical joints, revolute joints, cylindrical joints 

and translational joints. The terms within the equations of motion that are related to the constraints 

are formulated so that they can easily be incorporated into multibody dynamics codes.  

2.4.1 Basic Constraints  

Joints in multibody systems can be described as combinations of three basic constraints. These 

basic constraints are the spherical constraint and two different perpendicularity constraint 

conditions. The basic constraints for rigid bodies have been presented e.g. in References [10] and 

[9]. For flexible bodies, however, there is no comprehensive analytic representation which could 

describe all of the components in Eq. (24) that are related to the constraints.  

 

Spherical Constraint on Two Points  

The spherical constraint on two points, which is depicted in Fig. 2, is a simple basic constraint that 

prevents translational movement between two bodies. The constraint equation can be defined at 

given points iP  and jP . This basic constraint removes three degrees of freedom from the system.  
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Figure 2. Spherical constraint on two points. 

The constraint equation associated with points iP  and jP  can be written as follows:  

0uRuRC iPiijPjjs AA . (45) 

By differentiating Eq. (45) twice with respect to time, the following equation can be obtained: 

.qu~u~~u~R

qu~u~~u~R

qqqC
qqq

i
f

iP
R

iiPiiiPiiiiiPii

j
f

jP
R

jjPjjjPjjjjjPjj

sss

AAAA

AAAA

CC

2  

2  

 

(46) 

Based on Eq. (46), the following terms can be obtained for generalized coordinates related to the 

translation, orientation and flexibility of the Jacobian matrix:  
jP

R
jjPjiP

R
iiPis AAIAAIC u~u~q . (47) 

Similarly, a vector that includes quadratic velocity terms can be obtained as follows: 
iPiPiiijPjPjjjsc uu~~uu~~qqQ

qq 22 AAC . (48) 

 

Perpendicular Constraint Cd1 

The perpendicular constraint (type 1) preventing the rotation of vectors with respect to each other 

on levels which are not perpendicular to each other. The perpendicularity constraint is illustrated in 

Fig. 3. This basic constraint can be described with one constraint equation, which removes one 

degree of freedom from the system. 



 

 

 

 

16 

jR

Y

iz

iy

ix

iR

jy

jx

jz

XZ

i
fv j

fv

 

Figure 3. Type 1 perpendicular constraint.  

The constraint equation for a perpendicular constraint of vectors can be written as  

0TTTTTT1 jjP
f

jiiP
f

ij
f

jii
f

j
f

i
f

dC vvvvvv AAAAAA . (49) 

By differentiating the equation twice with respect to time, the following equation can be obtained: 

.vv~vv~vv~~v

vv~~vqv~v

v~vqv~vv~v

vvvvvvqqq
qqq

j
f

jj
f

jji
f

ii
f

iij
f

j
f

jjjii
f

i
f

i
f

iiijj
f

j
f

jPjjii
f

jj
f

jii
f

i
f

iPiijj
f

ii
f

ijj
f

j
f

i
f

j
f

i
f

j
f

i
f

ddd CCC

AAAAAA

AAAA

AAAAAA

TTT

TTTT

TTTTTT

TTT111

2 2

2   

2

 

 

 

(50) 

Based on Eq. (50), the following terms can be obtained for generalized coordinates related to the 

translation, orientation and flexibility of the Jacobian matrix:  
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Correspondingly, the term that includes quadratic velocity terms can be represented as  
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Perpendicular Constraint Cd2 

Perpendicular constraint type 2 differs from type 1 in that one of the vectors is defined as constant 

with respect to body i,  whereas  the  other  is  defined  between  the  bodies  as  shown  in  Fig.  4.  This  

constraint is also known as the point on plane since it contains one constraint equation eliminating 

one degree of freedom.  
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Figure 4. Type 2 perpendicularity constraint. 

The constraint equation for a type 2 perpendicularity constraint can be represented as 
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where ijd  is vector from iP  to jP  defined in the global coordinate system. By differentiating the 

equation twice with respect to time, the following equation can be obtained: 
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Based on Eq. (54), the following terms are obtained for generalized coordinates related to the 

translation, orientation and flexibility of the Jacobian matrix:  
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Correspondingly, the term that contains quadratic velocity terms can be expressed as follows: 
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2.4.2 Modeling of Joints Based on Basic Constraints  

In this section, the basic joint types used in multibody dynamics modeling applying the basic 

constraints presented above are briefly introduced. With different combinations of basic constraints, 

it is possible to model any joint. Table 1 summarizes partial derivatives with regard to generalized 

coordinates for each basic constraint. 

 

Table 1. Partial derivatives for basic constraints. 
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Table 2 presents the components of the constraint force vector related to the basic constraints.  

 

Table 2. Components of the constraint force vector related to basic constraints.  
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In the case of spherical joints, universal joints and revolute joints, the constraint location remains in 

place and the joints can be modeled by changing the constraints of the rotations. Joints such as 

cylinder and translational joints that enable relative translational movement between bodies are 

challenging to model due to their varying location, to which the constraint is applied. For flexible 

bodies, the location of the constraint must be solved for each time step. The location can be found 

for instance by applying interpolation between the nodes of the joint. Table 3 summarizes the 

descriptions of the joints and constraint equations with which they can be modeled.  
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Table 3. Descriptions of joints and basic constraint equations applied to them.  

Joint  Illustration Constraint 
equations 

Spherical joint 
The spherical joint is the 
simplest to model and can be 
described using one of the basic 
constraints. In the point 
constraint, the global 
coordinates of the points must 
be located overlappingly. The 
spherical joint constrains three 
degrees of freedom from the 
system.   
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Universal joint 

Universal joints can be modeled 
with a spherical constraint and a 
type 1 perpendicular constraint. 
The universal joint removes four 
degrees of freedom from the 
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Revolute joint  

A revolute joint can be adapted 
from the universal joint by 
adding another type 1 
perpendicularity constraint. The 
revolute joint removes five 
degrees of freedom from the 
system.   
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Cylindrical joint  

The modeling of a cylindrical 
joint requires two type 1 
perpendicular constraints to 
prevent the relative rotation of 
the bodies at point jP , and two 
type 2 perpendicular constraints 
to maintain point iP  on the 
translational axis. The 
cylindrical joint removes four 
degrees of freedom from the 
system.  X
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Translational joint  

A translational joint can be 
derived directly from the 
cylindrical joints by adding a 
type 1 perpendicularity 
constraint. A translational joint 
removes five degrees of 
freedom from the system.  
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It is important to note that basic constraints can be combined in various other ways than the ones 

described in Table 3. Due this fact, also more unconventional joints can be described. 
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