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A Robust Solution of the Spatial
Burmester Problem
The spatial Burmester problem is studied in this work, focusing on the synthesis of CCCC
and RCCC linkages for rigid-body guidance, where R stands for revolute, C for cylindri-
cal pair. The synthesis equations for CC and RC dyads are formulated using dual alge-
bra. The formulation is developed in such a way that it leads to a robust solution, based
on a semigraphical approach, which produces all the real solutions to the problem of
CC-dyad synthesis for five given poses. This eases the equation-solving process by filter-
ing out the complex solutions, while allowing for the handling of the special cases of
none or infinitely many solutions. The synthesis procedure is illustrated with examples
for four and five given poses. [DOI: 10.1115/1.4006658]

1 Introduction

The Burmester problem is concerned with finding the geometric
parameters of a four-bar linkage whose coupler link visits a given
set of finitely separated poses. The problem is also known as link-
age synthesis for either rigid-body guidance or motion generation.
Solutions of the Burmester problem have significant influence on
the synthesis of linkages for different applications [1–3].

As a classic subject, the Burmester problem has been exten-
sively studied in the literature [4–6]. In the case of the
planar Burmester problem, Bottema and Roth [7], Hunt [8], and
McCarthy [4] solved the five-pose problem by intersecting two
centerpoint curves of two four-pose problems for as many subsets
of four poses out of the given five-pose set, to obtain the center-
points. Lichtenheldt [9] proposed a method based on projective
geometry. Sandor and Erdman applied complex numbers [10];
Ravani and Roth [11] and Hayes and Zsombor-Murray [12], in
turn, solved the problem via the kinematic mapping. Spatial path
generation was addressed by C. Huang and B. Huang [13]. An
approach to obtain ordered solutions was proposed in Ref. [14].
More recently, Chen et al. [15] reported a comprehensive solution
of the planar Burmester problem by means of a semigraphical
approach. Moreover, the spherical Burmester problem has also
been extensively studied [16–22]. It is known that a linkage can
be synthesized exactly for up to five given poses in both the planar
and the spherical cases.

Compared with the extensive studies on the planar and spheri-
cal Burmester problems, the problem associated with the synthesis
of spatial linkages for rigid-body guidance, however, has received
much less attention. Very few works are available on the synthesis
of spatial four-bar linkages [23,24]. Some other relevant works
can be found in Refs. [24–28]. Wampler, et al. [29] developed a
continuation method that, when applied to the synthesis of spatial
mechanisms, leads to all possible solutions, real and complex.
Larochelle studied the synthesis of CC dyads—a dyad is nothing
but a link carrying one kinematic pair at each of its extremities—
with four poses [28]. Murray and McCarthy investigated the deter-
mination of central-axis congruences associated with the synthesis
of spatial CC dyads [30].

This paper focuses on the problem of synthesis of spatial four-
bar linkages, of the CCCC and RCCC types, for rigid-body guid-
ance. The formulation of the synthesis equations and their robust
solution are given due attention. While synthesis equations were
formulated by Tsai and Roth [25] for CC, RC, and RR dyads,
respectively, we reformulate these equations in such a way that

they lend themselves to a semigraphical solution. This formula-
tion is shown to lead to a system of four bivariate 12th-degree
polynomial equations. Using dialytic elimination [29], any two of
these four equations can lead to a resolvent polynomial of a degree
that can be as high as 122¼ 144, i.e., extremely high. The good
news is that the semigraphical approach adopted here filters out
the complex solutions, thereby easing the synthesis process.
Moreover, the formulation can be employed for the determination
of axis-congruences. A synthesis method of RCCC linkages is
developed, taking into account their asymmetric topology. It is
shown in the paper that the formulation proposed here works in
the special cases of either none or infinitely many solutions.

The established practice to solve the problem of interest relies
on dyad synthesis, as proposed by Roth [31,32]. In a nutshell, the
four-bar linkage is regarded as composed of two dyads. One of
the kinematic pairs of each dyad couples the dyad with the fixed
link, the other with the coupler link. Given that the problem of
dyad synthesis allows for multiple solutions, one solution linkage
is composed of one of the many possible pairs obtained from the
multiplicity of solutions. We follow this practice in this paper.

Dual algebra is adopted at the level of problem formulation,
addressing the geometric relationships between the design task
and the possible linkages. Such an approach exploits the Principle
of Transference to derive the synthesis equations for spatial link-
ages using those of their spherical counterparts.

2 Problem Formulation

A generic spatial four-bar linkage of the RCCC type is depicted
in Fig. 1. As the coupler link AA* moves, while visiting m given poses,
the moving axes Z3 and Z4, represented by the dual vectors â0 and
â
�
0 at the reference pose, attain m locations. A line being defined

by a point and a direction, the line is short of two dimensions to
occupy a rigid-body pose. Henceforth, a line location will be
understood as given by four independent parameters, grouped in a
six-dimensional array of Plücker coordinates [33]. The location of
a rigid body, known as the body pose, requires six independent pa-
rameters. A displacement undergone by a line is also known as an
incompletely specified displacement [34]. The m locations of the
Z3-axis are represented by the dual vectors â1; …; âm, those of the
Z4-axis by â

�
1; …; â

�
m.

Likewise, the dual vectors of the fixed axes Z2 and Z1 are repre-
sented by the dual vectors b̂ and b̂

�
, respectively. With the fore-

going model, the spatial Burmester problem is stated as:

Find a spatial four-bar linkage that will conduct its coupler link
through a set S of m poses, given by the orthogonal matrices fQjg

m
1

and points Rj

� �m

1
of the coupler link, of position vectors rj

� �m

1
,

defined with respect to a reference pose, given by Q0¼ 1 and r0¼ 0.
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In the above statement, 1 denotes the 3� 3 identity matrix and
0 the three-dimensional zero vector.

3 Synthesis of CC and RC Dyads

The solution of the spatial Burmester problem leads to the syn-
thesis of the RCCC linkage, which is the main objective of this pa-
per. The synthesis of this linkage, in turn, is achieved here based
on that of the four-bar spherical linkage, recalled in Fig. 2.

For quick reference, the synthesis of the spherical linkage is
recalled below. The main issue in this synthesis problem is the
locations of the fixed axes OB and OB� as well as those of their
moving counterparts OA and OA� at the reference pose of the cou-
pler link. Within the approach adopted here at the outset, one RR
dyad,

_
AB is synthesized. As the synthesis problem associated with

this dyad admits up to six solutions [4], the second dyad, _A � B�,
is obtained from the remaining solutions. The maximum number
of solutions of this problem is thus the combination number of six
objects taking two at a time, namely, 15.

Furthermore, the synthesis equations of the RR dyad of interest
rely on the constancy of angle a2 throughout the various locations
adopted by line OA as the coupler link visits the m given poses,
which in this case reduce to orientations. Let a0 denote the posi-
tion (unit) vector of A0, the position of A at the reference pose of
the coupler link, aj denoting the position of the same point at the
jth pose of the same link. Constancy of a2 throughout the m poses
thus requires

aT
j b ¼ aT

0 b � cos a2; j ¼ 1;…;m (1a)

with b denoting the position vector of B, and hence

a0k k2 ¼ bk k2 ¼ 1 (1b)

Moreover, aj is obtained as a rotation of a0 via the rotation matrix
Qj

aj ¼ Qja0; j ¼ 1;…;m (1c)

With this background, we can now undertake the synthesis of the
CC and RC dyads.

Some fundamental concepts of dual algebra, adopted in this
work to formulate the synthesis problem, are summarized in Ap-
pendix A. For more details, the reader is directed to the pertinent
literature [4,35–37].

With reference to the spatial linkage of Fig. 1, joint axes Z3 and
Z4, which define uniquely the coupler link, undergo spatial motion
while visiting the m given poses. The spatial displacement of the
moving axis Z3 in terms of dual vectors can be described by

âj ¼ Q̂jâ0; j ¼ 1;…;m (2)

where â0 is the dual representation of line Z3 at the reference pose
of link 3, while Q̂j is the dual orthogonal matrix representing the
spatial displacement of Z3, namely

â0 ¼ a0 þ e�a0; Q̂j ¼ Qj þ e�Qj (3)

with a0 denoting the unit vector parallel to Z3 at its reference pose
and �a0 the moment of the same axis with respect to the origin O1

of the frame {X1,Y1,Z1}. Moreover, Qj is the proper orthogonal

Fig. 1 The RCCC linkage

Fig. 2 The spherical 4R linkage
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matrix that rotates the coupler link from its 0th to its jth attitude.
In addition, �Qj is the product of a translation matrix Rj by Qj, i.e.,

�Qj ¼ RjQj (4)

with Rj defined as the cross-product matrix of vector rj, i.e.,
Rj¼CPM (rj)¼ @(rj� v)=@(v), for any vector v 2 R3.

Given that the pose of Z3 with respect to Z2 remains constant
throughout the motion of the coupler link, the dual angle between
the two axes remains constant, and hence

â
T
j b̂ ¼ cosða2 þ ea2Þ � cos a2 � ea2 sin a2; j ¼ 0; …; m (5)

where

b̂ ¼ bþ �eb (6)

with a2, a2, and b shown in Fig. 1, while vector �b denotes the
moment of Z2 with respect to O1. Subtracting the 0th equation
from the m remaining equations (5) leads to

ðâj � â0ÞT b̂ ¼ 0; j ¼ 1; …; m (7)

which, upon expansion into its primal and dual parts, for j¼ 1, …,
m, yields

aT
0 ðQT

j � 1Þb ¼ 0 (8a)

aT
0

�Q
T
j bþ aT

0 ðQT
j � 1Þ�bþ �aT

0 ðQT
j � 1Þb ¼ 0 (8b)

whose unknowns, a0, �a0, b, and �b, are subject to the constraints

aT
0
�a0 ¼ 0; bT�b ¼ 0 (9a)

a0k k2 ¼ 1; bk k2 ¼ 1 (9b)

We thus have two real sets of equations, Eq. (8a) for the primal
and Eq. (8b) for the dual part. Of these, Eq. (8a) involves only
unit vectors of the joint axes, while Eq. (8b) involves both unit
and moment vectors. Therefore, while Eq. (8a) is dimensionless,
Eq. (8b) has units of length. Following Ref. [4], we call the first
set the direction, the second the moment equations. Both sets
stand for the basic geometric constraints on different dyads,
including CC, RC, and RR. Furthermore, Eq. (8a) are nothing but
the synthesis equations for the spherical four-bar linkage, illus-
trated in Fig. 2, under motion generation1.

Equation (8b) can have a different, more useful form. It is con-
venient to introduce the position vectors of points on the axes of
rotation as design variables, namely

�a0 ¼ rA0 � a0; �b ¼ rB� (10)

where rA0 and rB are the position vectors of points A0 and B on
the two axes in the frame {X1,Y1,Z1}. In light of Eq. (10),
Eq. (8b), after some manipulations, can be rewritten as

ðrAj � rBÞTðaj � bÞ � ðrA0 � rBÞTða0 � bÞ ¼ 0; j ¼ 1;…;m

(11)

where aj¼Qja0, while rAj¼ rjþQjrA0. The above equation
describes the constancy of the projection of the line segment
defined by two points on the two axes onto their common normal.

3.1 The Synthesis of the CC Dyad. The CC dyad under syn-
thesis consists of a rigid link that is coupled to ground via one C
joint and to the coupler link via a second C joint. The dyad can be
geometrically regarded as a link composed of two skew lines,
joined to each other by means of a third line, their common nor-
mal, for example. A CC dyad is thus determined once the two
skew lines are known. The problem of CC-dyad synthesis thus
reduces to locating the two joint axes. The latter can be uniquely
described by means of the dual vectors â0 and b̂, which comprise
a total of 12 scalar components. Note that a0 and b are unit vec-
tors, while a line can be regarded as a zero-pitch screw [4], as
expressed by Eqs. (9a) and (9b). Those four scalar constraints
thus reduce the number of independent variables to only eight.

3.1.1 Five-Pose Synthesis (m¼ 4). Equations (8a) and (8b)
lead to 2m constraint equations for m given poses. For the number
of the latter to yield as many equations as unknowns, i.e., eight,
one must have 2m¼ 8. The system thus admits exact solutions for
CC dyads in the case of m¼ 4, i.e., with five given poses.

Knowing that the direction equations are independent of the
moment equations, we can find first the direction vectors through
Eq. (8a). These equations, identical to those of the Burmester
problem for spherical linkages, admit at most six real solutions.
With each such solution, the moment equations become linear in
the moments, namely

pT
j �a0 þ qT

j
�b ¼ wj; j ¼ 1;…;m (12)

with

pj ¼ ðQT
j � 1Þb; qj ¼ ðQj � 1Þa0; wj ¼ �aT

0
�Q

T
j b (13)

Equations (9a) and (12) amount to six linear equations for six
unknowns in the case of m¼ 4, thus defining a unique pair of
moments, �a0 and �b, in the absence of singularities.

The six linear equations (9a) and (12) can be cast in vector
form, namely

Mx ¼ w (14)

where

M ¼

pT
1 qT

1

..

. ..
.

pT
4 qT

4

aT
0 0T

0T bT

2
666666664

3
777777775
; x ¼

�a0

�b

" #
; w ¼

w1

..

.

w4

0

0

2
666666664

3
777777775

(15)

and hence, M is a 6� 6 matrix.
So far, we have reformulated the synthesis equations for CC

dyads. Apparently, the spatial linkage synthesis with CC dyads is
based essentially on the Burmester problem for spherical linkages.
Note that Eq. (8a) also represent the synthesis equations for spher-
ical four-bar linkages, which can be readily solved with a semi-
graphical approach, as reported in Ref. [20].

3.1.2 Four-Pose Synthesis (m¼ 3). If only four poses are
given, a total of six equations are obtained from Eqs. (8a) and
(8b). In this case, the system of synthesis equations is underdeter-
mined, and hence, infinitely many solutions are possible. These
solutions can be regarded as sets of lines, called congruences,
which define the moving and fixed axes. The generation of line
congruences is described in Sec. 4.3.

3.2 The RC Dyad. An RC dyad is composed of a revolute
and a cylindrical joint. The constraints for a CC spatial dyad also
apply to an RC dyad. Moreover, compared with a CC dyad, an RC

1That is, if abstraction is made of the translation of the rigid body when formulat-
ing the problem stated in Section 2, then points Rj, for j¼ 1,…,m, coincide with point
R0, and the problem at hand becomes one of spherical synthesis.
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dyad is subject to one more constraint: the sliding sj along the
fixed axis, shown in Fig. 3, is zero. This constraint can be
expressed in terms of the dual vector of the common normal.

According to Eq. (52) of Appendix A, for the jth pose, the com-
mon normal to La and Lb is

n̂j ¼ nj þ e�nj; j ¼ 0;…;m (16)

with

nj ¼
1

sin a2j
ðaj � bÞ (17)

�nj ¼
1

sin a2j
ðaj � �bþ �aj � bÞ � a2j cos a2j

sin2a2j

ðaj � bÞ (18)

where a2j and a2j are the distance and angle between La and Lb,
respectively, at the jth given pose. Now, by virtue of the link ri-
gidity, a2j¼ a20 : a2 and a2j¼ a20 : a2, the above equations
then becoming

nj ¼
1

sin a2

ða� bÞ (19)

�nj ¼
1

sin a2

ðaj � �bþ �aj � bÞ � a2 cos a2

sin2a2

ðaj � bÞ (20)

The dual angle between two poses of the common normals, n̂j and
n̂0, can be found from

cos b̂j ¼ n̂
T
j n̂0; j ¼ 1;…;m (21)

where b̂j ¼ bj þ esj with bj and sj denoting the jth rotation and
the jth sliding of the joint, respectively. Equating the dual parts of
the expanded equation (21) leads to

� sj sin bj ¼
1

sin3a2

ðAja2 cos a2 � Bj sin a2Þ (22)

with

Aj ¼ 2 ða0 � bÞTðaj � bÞ (23)

Bj ¼ ða0 � bÞTðaj � �bþ �aj � bÞ þ ðaj � bÞTða0 � �bþ �a0 � bÞ
(24)

For RC dyads, sj¼ 0, while, for spatial dyads, a2 does not vanish
because their synthesis is based on that of a spherical linkage, for
which no pair of revolute axes are parallel; hence, Eq. (22) yields

Aja2 cos a2 � Bj sin a2 ¼ 0; j ¼ 1;…;m (25)

which is the set of constraint equations needed to guarantee the
vanishing of the sliding on the fixed axis.

For an RC spatial dyad, we have constraint equations (8a),
(8b), and (25), which account for 3m equations for m poses. Note
that the problem bears eight independent unknowns, which means
that an RC-dyad synthesis problem admits exact solutions for
m¼ 8=3. Since a fractional number of given poses does not make
sense, the number of poses has to be an integer, m¼ 2, in which
case the number of variables exceeds that of constraint equations
by two, infinitely many solutions thus being available.

An RR dyad, consisting of two revolute joints, requires addi-
tional constraint equations to those of the RC dyad. The additional
equations pertain to the vanishing of the second sliding, namely,
dj of Fig. 3. Alternatively, the constraint equations can be derived
from the geometric relationship between two axes, as included in
Appendix B for the interested reader. The formulation involves
4mþ 2 equations for m poses. On the other hand, there are 10 in-
dependent variables, with four direction and six position variables.
For m¼ 2, i.e., three poses, an RR spatial dyad admits exact solu-
tions, as Tsai and Roth found [25].

4 Synthesis of Four-bar Linkages

A two-degree-of-freedom (two-dof) CCCC linkage can be built
with two CC dyads. As shown in Sec. 3.1, each dyad admits exact
solutions for m¼ 4, i.e., for five poses. A CCCC linkage can thus
be synthesized exactly for m¼ 4.

An RCCC linkage is different from a CCCC linkage, the former
having one dof, the latter two. Moreover, an RCCC linkage has an
asymmetrical topology. As discussed in Sec. 3, an RC dyad
admits exact solutions only for three given poses. Hence, there are
no exact solutions for the RCCC linkage synthesis when m> 2.

4.1 A Semigraphical Approach to Direction-Equation
Solving. The direction equations (8a) can be solved by means of
the semigraphical approach introduced for the synthesis of spheri-
cal four-bar linkages [20]. In this approach, spherical coordinates
on the unit sphere, namely, longitude and latitude, are used to
describe the unit vectors of all four directions. Let, then, ha and

Fig. 3 A CC spatial dyad, which becomes an RC dyad if the sliding sj vanishes
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ua be the longitude and the latitude of a point on the unit sphere
defining La, hb and ub the counterpart coordinates for the point
defining Lb. Hence

a0 ¼
cos /a cos ha

cos /a sin ha

sin /a

2
4

3
5; b ¼

cos /b cos hb

cos /b sin hb

sin /b

2
4

3
5 (26)

Further, the direction equations are rewritten as

cT
j b ¼ 0; j ¼ 1;…; 4 (27)

or, upon assembling all four equations in array form,

Cb ¼ 0; C ¼

cT
1

cT
2

cT
3

cT
4

2
66664

3
77775 (28)

where

cj ¼ ðQj � 1Þa0 (29)

As vector b is of unit magnitude, it cannot vanish, and hence, C
must be rank-deficient; therefore, its four 3� 3 subdeterminants
must vanish

Djða0Þ � detðCjÞ ¼ 0; j ¼ 1; …; 4 (30)

with Cj denoting the 3� 3 matrix obtained upon deleting the jth
row from C. Now the four determinant equations (30) in a0

become equations in the trigonometric functions of ua and ha.
They define four contours Cj in the ua� ha plane. If the four con-
tours are plotted in the square� p=2 � ua � p=2,�p=2 � ha �
p=2, then the intersections of the four contours yield all the real
solutions sought.2 There can be six, four, two or no real solutions,
in general [4,18]. Two special cases, zero and infinitely many sol-
utions, are noted. In the case of zero solutions, no common inter-
section of the four contours appears in the superimposed plots. At
the other end of the spectrum, infinitely many solutions are possi-
ble when either ua or ub is identical to 6p=2, which thus yields
points at a pole of the unit sphere; poles are known to admit any
possible longitude—at the poles of the Earth, any time is good, as
all time zones converge there!

The intersections are estimated by inspection on the four con-
tours. These estimates can then be refined if used as initial guesses
of an iterative procedure to find the roots of any pair of the four
foregoing equations. As there are as many as six possible such
pairs, the choice of the two equations depends on the arbitrariness
of the designer. If the choice turns out to be lucky, i.e., if the two
contours intersect at “sharp enough” angles, then the solution will
be reliable enough; else, the solution may be either unreliable—
contours intersect at almost-coincident contour segments—or
impossible to find—contours are tangent to each other at the inter-
section point. To help the designer, a least-square approximation
of the overdetermined system of four nonlinear equations in only
two unknowns is recommended here: in fact, the four contours
will not intersect at one common point because of roundoff error;
however, nonlinear least squares will return the most likely, and
hence, the most reliable estimate of the intersection. This is the
same approach taken by engineers in problems of triangulation.

Once a0 is known, cj, for j¼ 1, …, 4, can be computed from
Eq. (29), and hence, the 4� 3 matrix C is available. Vector b can
then be found as the unit vector spanning the nullspace of C,

which can be determined using, e.g., the QR-decomposition3 of C
[38]. While this approach is sound, it entails one drawback: any
roundoff error incurred in computing C is propagated into the
computation of b. A robust approach consists in computing b in-
dependent from the computation of a0. In this vein, the foregoing
procedure is paraphrased, as applicable to the other end of the
dyad, which is done by rewriting Eq. (8a) as

Da0 ¼ 0; D ¼

dT
1

dT
2

dT
3

dT
4

2
66664

3
77775 (31)

whence the determinant equations to find hb and ub are derived as

DjðbÞ � detðDjÞ ¼ 0; j ¼ 1; …; 4 (32)

with Dj denoting the 3� 3 matrix obtained upon deleting the jth

row from D. Note that dj ¼ QT
j � 1

� �
b.

4.2 Solving the Linear Equations of the Moment
Variables. Once the unit vectors a0 and b are known, a system of
linear equations in six unknowns can be obtained from Eq. (14)
for the moments �a0 and �b. Now, as Eq. (14) is a system of mþ 2
linear equations for six moment variables, a unique set of solu-
tions for �a0 and �b can be found for m¼ 4.

4.3 Congruences of Fixed and Moving Axes. In the synthe-
sis of planar four-bar linkages with four given poses, circlepoint-
and centerpoint curves can be generated to select pivoting points
for moving and fixed-joint centers, respectively. In analogy with
the planar case, sets of lines for the moving and fixed axes can be
determined. These sets of lines, called congruences, define the
moving and fixed axes of the CC dyads that guide a rigid body
through four given poses.

Murray and McCarthy developed a parametrization technique
for the central-axis congruence for the problem of four-pose rigid-
body guidance, utilizing the dual crank angle of rotation as gener-
ation parameter [30]. Larochelle developed a procedure to deter-
mine both the fixed and moving congruences [28].

We propose below an alternative method of defining and gener-
ating congruences of lines that may be used as fixed and moving
axes. The method takes advantage of the three constraint equa-
tions, as outlined below.

Referring to Eq. (32) with m¼ 3, C becomes a 3� 3 matrix,
which must be singular. This means that, under the four given poses

Fða0Þ � detðCÞ ¼ ðc1 � c2ÞTc3 ¼ 0 (33)

Equation (33) defines a conic surface in Cartesian space. Its inter-
section with the unit sphere yields a spherical curve, which is
called the spherical circlepoint curve [4]. Each point on the curve
defines a possible unit vector for the moving axis.

Likewise, the equation for the unit vector of the fixed axis has
the form

GðbÞ � detðDÞ ¼ ðd1 � d2ÞTd3 ¼ 0 (34)

The intersection of the cubic surface described by the above equation
with the unit sphere yields the spherical centerpoint curve. Each
point on the curve corresponds to a unit vector for the fixed axis.

Note that the centerpoint and the circlepoint curves are linked
through the direction constraint equation (8a). This means that

2Here, of course, the antipodal solutions of those lying in the square of side-
length p are excluded.

3Every m�n matrix with m�n can be factored into a m�m orthogonal matrix Q

and an upper-triangular matrix R [38].
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each point on one of the two curves has its unique matching point
on the other curve.

The dual-vector parts of the two axes, i.e., the moments �a0 and
�b, can be found from Eq. (14). However, for m¼ 3, M of Eq. (14)
is of 5� 6, and the system is underdetermined. A sixth row mT

6 is
added to matrix M, this row being defined as

mT
6 ¼ ½1; 0; 0; 0; 0; 0� (35)

and, correspondingly, the right-hand side of Eq. (14) becomes

w ¼ ½w1;…;wm; 0; 0; k�T (36)

which means that the x-component ð�a0Þx of �a0 is assigned a vari-
able value k. If the choice of m6 happens to render M singular,
then another component of �a0 should be chosen instead.

Because of the algebraic coupling between �a0 and �b, moreover,
the latter also turns out to be a function of parameter k. Equation
(14) thus yields, in this case, the moments sought as linear func-
tions of parameter k. We thus obtain solution axes in the form of
Plücker coordinates ½aT

0
�aT

0 ðkÞ�
T

and ½bT �b
TðkÞ�T , each standing

for a set of parallel lines located on the same plane.
Once vectors a0, �a0, b, and �b are available, the position vectors

rA0 and rB, as introduced in Eq. (10), can be computed. However,
the foregoing vector equations do not determine the position vec-
tors sought uniquely, as each equation comprises only two linearly
independent scalar equations. To define one particular solution,
the condition is imposed that the solution sought be closest to the
origin, thereby introducing one additional equation for rA0,
aT

0 rA0 ¼ 0, and one for rB, b
T
rB¼ 0. In this way, four linear equa-

tions for each position vector are derived, of which three are line-
arly independent, the fourth being consistent with the other three.
The results are

rA0 ¼ a0 � �a0; rB ¼ b� �b (37)

thereby completing all calculations required.

5 Examples

We include here examples, solved with Maple, of spatial link-
age synthesis to demonstrate the foregoing method. The given
poses are displayed in Table 1, where the orientation is described
with natural invariants [39], i.e., the unit vector ej of the axis of
rotation and the angle of rotation uj, at the jth pose. The rotation
matrix at this pose then takes the form [39]

Qj ¼ 1þ sujEj þ ð1� cujÞE2
j (38)

where Ej denotes the cross-product matrix of ej, while cuj and suj

stand for cos uj and sin uj, respectively.

5.1 Five-Pose Case. For starters, the direction unit vectors of
the axes are found. The four trigonometric functions, produced
from Eq. (32) for vector b of the fixed axis, are

D1ðbÞ ¼ 0:7954 chbc2/bshbs/b þ 0:2216 s3/b � 0:5388 c3hbc3/b

þ 0:8001 s3hbc3/b � 1:1618 c2hbc2/bs/b

þ 0:1403 chbc3/bs2hb þ 0:0827 chbc/bs2/b

þ 0:1425 s2hbc2/bs/b � 0:6723 shbc/bs2/b

þ 0:0601 c2hbc3/bshb (39a)

D2ðbÞ ¼ 0:3726 chbc2/bshbs/b þ 0:2385 s3/b � 0:6712 c3hbc3/b

þ 0:6292 s3hbc3/b � 0:5949 c2hbc2/bs/b

þ 0:6866 chbc3/bs2hb þ 0:8044 chbc/bs2/b

� 0:2671 s2hbc2/bs/b � 1:1069 shbc/bs2/b

� 0:1149 c2hbc3/bshb (39b)

Table 1 Five given poses

# /j (rad) eT
j rT

j

1 0 [0,0,1] [0,0,0]
2 0.2275 [�0.5516,�0.4597,0.6959] [8.5499,4.2276,�11.3658]
3 0.3361 [�0.7508,�0.5362,0.3855] [28.3322,12.7149,�13.0406]
4 0.3288 [�0.7629,�0.6357,�0.1169] [41.4694,23.2247,�1.1371]
5 0.2519 [�0.4171,�0.4950,�0.7621] [34.2001,29.1295,9.0739] Fig. 4 Contour plots for (a) angles /b and hb, and (b) angles /a

and ha
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D3ðbÞ¼ �0:1721chbc2/bshbs/bþ0:2086s3/b�0:3794c3hbc3/b

þ0:1339s3hbc3/bþ0:4073c2hbc2/bs/b

þ0:8991chbc3/bs2hbþ0:8365chbc/bs2/b

�0:6039s2hbc2/bs/b�0:9426shbc/bs2/b

�0:2169c2hbc3/bshb (39c)

D4ðbÞ¼ �0:4783chbc2/bshbs/bþ0:1969s3/b�0:0680c3hbc3/b

�0:1912s3hbc3/bþ0:6195c2hbc2/bs/b

þ0:5308chbc3/bs2hbþ0:4241chbc/bs2/b

�0:5335s2hbc2/bs/b�0:3676shbc/bs2/b

�0:2046c2hbc3/bshb (39d)

The foregoing equations involve sixth-order expressions of the
harmonic functions of hb and ub. In this light, if the tan-half iden-
tities [29] are introduced, Eqs. (39a)–(39d) become bivariate poly-
nomial equations of the 12th degree. This means that the Bezout
number of any pair of these is 122¼ 144, the resolvent polynomial
of the two thus being monovariate, but of 144th degree. It is well
known [40] that polynomial-root finding is inherently ill-
conditioned, i.e., extremely sensitive to round-off error in the
coefficients, as the polynomial degree becomes moderately large,
of 10 or higher. The semigraphical method proposed here comes
to the rescue. The four contours stemming from Eqs. (39a)–(39d)
are shown in Fig. 4(a). Four intersections can be identified, which
suggests four real solutions, for which accurate values are found
with a nonlinear least-square solver—as per the discussion in Sec.
4.1 in connection with the solution of Eq. (30)—namely, Maple’s
“LSSolve.” The contour plots for vector a0 are shown in Fig. 4(b).
Identifying the intersection around ua¼6p=2, where all four
contours are superimposed along the line ua¼6p=2, requires

special attention. While there are infinitely many intersections, all
correspond to one unique solution, a0¼ [0,0,�1]T, no matter what
value ha takes. This is the special case discussed in Sec. 4.1,
which shows that the semigraphical method is able to cope with
special cases.

A total of four real solutions are found for the unit vectors of
the mobile and fixed-joint axes. These solutions are matched
through Eq. (8a) into four sets, each being a CC-dyad solution.
From these solutions, the moment components of the two axes of
the CC dyad are found from Eq. (14), with

Table 2 CCCC linkage solutions

# a0 b a0 b

1 [0.557,0.461,�0.691] [0.775,0.557,�0.299] [�16.724,5.525,�9.784] [�24.798,1.756,�61.078]
2 [0.805,�0.370,�0.463] [0.843,�0.430,�0.324] [�27.809,39.395,�79.918] [�22.408,35.386,�105.146]
3 [0.000,0.000,�1.000] [0.417,0.495,0.762] [0.000,0.000,0.000] [�24.109,�19.553,25.894]
4 [0.000,�0.831,0.557] [0.083,0.756,�0.649] [�24.925,29.496,44.034] [19.108,�22.451,�23.685]

Fig. 5 A CCCC linkage for five given poses

Fig. 6 Centerpoint and circlepoint spherical curves
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M¼

0:0491 �0:0883 �0:0194 �0:0009 0:0013 0:0001

0:0164 �0:0258 �0:0041 0:0715 �0:0981 0:0027

�0:0867 0:1041 �0:0003 0:1555 �0:1943 0:0416

�0:1622 0:1666 �0:0194 0:1545 �0:1932 0:0409

0:5566 0:4613 �0:6909 0 0 0

0 0 0 0:7752 0:5565 �0:2987

2
6666664

3
7777775

(40)

w ¼ �1:1049;�2:4925;�4:7123;�2:8470; 0; 0½ �T (41)

Equation (41) displays matrix M and vector w produced from the
direction solution #1. The corresponding moments can be directly
obtained from x¼M�1w. All dual vectors of the moving and
fixed axes are listed in Table 2. A total of six CCCC mechanisms
can be synthesized from the four sets of solutions. A mechanism
generated from solutions #3 and #4 is shown in Fig. 5. Note that
this example takes advantage of the RCCC linkage reported in
Ref. [26]. The mechanism shown in Fig. 5, identical to a linkage
in Ref. [26], validates the method developed in this work.

5.2 Four-Pose Case. The synthesis of CCCC linkages with
four poses was conducted using as data the first four rows of Table 1.
For the four given poses, the associated centerpoint- and circle-
point curves are displayed in Fig. 6, on the unit sphere. Of these,
the circlepoint curve is selected to generate the congruences of
lines. Figure 7 shows the congruences of the fixed and moving
axes, where solid edges of each plane indicate the direction of the
set of lines. Note that 24 points are selected from the centerpoint
curve to generate the congruences.

6 Discussion and Conclusions

The spatial Burmester problem was formulated using dual alge-
bra, then robustly solved using a semigraphical approach. The
synthesis equations were derived for different types of spatial
dyads, CC, CR, and RR. A synthesis method of spatial linkages
applicable to CCCC and RCCC linkages was developed. The
method consists of two steps: direction-equation solving and
moment-equation solving. An example included in the paper
shows that the method is able to cope with the special cases
involving none or infinitely many solutions.

A contribution of the paper lies in the formulation of the syn-
thesis equations, from which the congruences of lines to deter-
mine fixed and moving axes can be generated. The formulation,
expressed in terms of direction and moments of axes of rotation,
reveals the geometric relationship between the synthesis tasks and
the possible solutions. It was shown that the semigraphical
approach, employed in equation-solving, provides a robust means
of obtaining all possible solutions, including the case of CCCC
linkages with four given poses.

While the overall approach emphasizes robustness, there is an
element of arbitrariness that hampers the concept: the x-compo-
nent of �a0 was arbitrarily set to k when finding the congruences,
but any other component of this moment, or of �b for that matter,
could have been chosen. This shortcoming can be fixed, but we
have not elaborated on it for the sake of conciseness.

Finally, notice that: (i) the CC dyad can meet up to five given
poses; (ii) the RC dyad can meet up to three given poses; and (iii)
the spatial counterpart of the planar, or spherical for that matter,
four-bar linkage is the RCCC linkage. In this light, then, the
RCCC linkage can visit up to three given poses of its coupler link.

Appendix A: A Summary of Dual Algebra

Some fundamental concepts of dual algebra are summarized
here. More details can be found in Refs. [4,35,36].

A dual number â is defined as the sum of a primal part a, and a
dual part �a, namely

Fig. 7 Congruences of (a) the fixed axis; and (b) the moving
axis

Fig. 8 The dual angle between two lines
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â ¼ aþ e�a (A1)

where e is the dual unity, which verifies e= 0 and e2¼ 0, while a
and �a are real numbers, the former being the primal part of â, the
latter its dual part.

The dual angle ĥ between two skew lines L1 and L2 is defined
as

ĥ ¼ hþ es (A2)

where h and s are, respectively, the twist angle and the distance
between the two lines, as shown in Fig. 8.

A dual function of a dual argument, f̂ ðx̂Þ, is defined as

f̂ ðx̂Þ ¼ f ðxÞ þ ef 0ð�xÞ (A3)

In this vein, the dual trigonometric functions of the dual angle ĥ
become

cos ĥ ¼ cos h� es sin h; sin ĥ ¼ sin hþ es cos h (A4)

Moreover, all identities for ordinary trigonometry hold for dual
angles.

A dual vector â is defined as the sum of a primal vector part a,
and a dual-vector part �a, namely

â ¼ aþ e�a (A5)

where both a and �a are Cartesian, three-dimensional real-valued
vectors.

Dual vectors can be used to represent a line. The six normalized
Plücker coordinates [4] of a line L passing through a point P of
position vector p and parallel to the unit vector e are given by the
pair (e, p� e), where the product �e ¼ p� e denotes the moment
of the line with respect to the origin. The foregoing coordinates
can be represented by a dual unit vector ê, whose six real compo-
nents are the Plücker coordinates of L, namely

ê ¼ eþ ee; with ek k ¼ 1; eT�e ¼ 0 (A6)

For two lines L1 and L2, let â and b̂ be their dual-vector represen-
tation, as depicted in Fig. 8. The relations below hold

â
T
b̂ ¼ cos ĥ; â� b̂ ¼ n̂ sin ĥ (A7)

where ĥ is the dual angle between lines L1 and L2, while n̂ is the
dual unit vector of the common normal to the two lines, which is
given by

n̂ ¼ 1

sin ĥ
ðâ� b̂Þ (A8)

That is

n̂ ¼ 1

sin hþ es cos h
ðaþ eâÞ � ðbþ e�bÞ (A9)

Expanding the right-hand side of the above equation yields, after
simplification

n̂ ¼ 1

sin h
ða� bÞ þ e

1

sin h
ða� �bþ �a� bÞ � s cos h

sin2h
ða� bÞ

� �
(A10)

or, in compact form

n̂ ¼ nþ e�n (A11)

with

n ¼ 1

sin h
ða� bÞ; �n ¼ 1

sin h
ða� �bþ �a� bÞ � s cos h

sin2h
ða� bÞ

(A12)

Appendix B: Synthesis Equation of RR Dyads

The additional constraint equations for RR dyads can be
derived from the zero-sliding condition, using the same approach
as in the case of RC dyads discussed in Sec. 3.2. Alternatively, the
constraint equations can be derived from the geometric relation-
ship between two axes. With reference to Fig. 3, where B and N
are intersections of the common normal with lines La and Lb, if
point A0 is coincident with N at the reference configuration, these
two points will remain coincident for all poses. As line NB is the
common normal to the two axes, the constraints are expressed as

aT
j ðrAj � rBÞ ¼ 0; bTðrAj � rBÞ ¼ 0; j ¼ 0;…;m (B1)

where rAj¼ rjþQjrA0. Equations (B1), together with Eqs. (8a)
and (11), build up the system of synthesis equations for RR dyads.
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