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Synthesis of RCCC Linkages
to Visit Four Given Poses
This paper focuses on the problem of synthesis of spatial four-bar linkages of the RCCC
type for rigid-body guidance with four given poses, R denoting a revolute, C a cylindrical
kinematic pair. While synthesis equations for CC and RC dyads are available in the liter-
ature, the synthesis of spatial RCCC four-bar linkages requires special attention, due to
its asymmetric topology. We revisit the problem to cope robustly with the asymmetry,
namely, the approximate nature of the RC dyad and the infinity of exact solutions of the
CC dyad for the number of given poses. Our approach includes a robust formulation of
the synthesis of CC dyads, for the determination of axis-congruences. Moreover, we for-
mulate a uniform synthesis equation, which enables us to treat both RC and CC dyads,
with properly selected constraints for both cases. Two design examples are included.
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1 Introduction

The Burmester problem is concerned with finding the geometric
parameters of a four-bar linkage whose coupler link is to visit a
given set of finitely separated poses. The problem is also known
as linkage synthesis for rigid-body guidance or, equivalently, for
motion generation.

The Burmester problem has been studied for planar, spherical,
and spatial linkages. Compared with the extensive studies on the
planar and spherical Burmester problems, that associated with the
synthesis of spatial linkages for rigid-body guidance, however,
has received much less attention. A relative paucity of works is
known on the synthesis of spatial four-bar linkages [1–10]. Of
these works, Larochelle [6] studied the synthesis of CC dyads—a
dyad is nothing but a binary link carrying one kinematic pair at
each of its extremities—for four poses. Wampler et al. [7] devel-
oped a continuation method that, when applied to the synthesis of
spatial mechanisms, leads to all possible solutions, real and com-
plex. Murray and McCarthy [8] investigated the determination of
central-axis congruences associated with the synthesis of spatial
CC dyads.

In the spatial rigid-body guidance problem, the synthesis of
spatial RCCC four-bar linkages requires special attention, due to
its asymmetric topology. A RCCC linkage can be produced upon
assembling one RC dyad with one CC dyad, each with its own set
of constraints. The difference is apparent in both the number and
the type of constraints. For this reason, solutions to CC and RC
dyads have to be found separately for the same set of given poses.
For CC-dyads, exact solutions can be found with five given poses
(including the reference pose). On the other hand, a RC-dyad does
not admit exact solutions for four given poses [3,11].

This paper focuses on the problem of synthesis of spatial four-
bar linkages of the RCCC type for rigid-body guidance through
four given poses. While synthesis equations were formulated by
Tsai and Roth [3] for CC and RC dyads, we revisit the problem
regarding the approximate synthesis of the RC dyad, while coping
with the infinity of CC-dyads within a novel approach. This
includes a robust formulation of the synthesis of CC dyads for the
determination of axis-congruences. Moreover, we formulate the
RC dyad synthesis with properly selected constraints to guarantee
the generation of a RC dyad. Design examples are included.

The formulation of synthesis equations in this work is devel-
oped by extending the authors’ previous work [10], in which dual
algebra was adopted at the level of problem formulation. Dual
algebra exploits the Principle of Transference [12] to derive the
synthesis equations for spatial linkages using those of their spheri-
cal counterparts. In this formulation, we address not only the geo-
metric relationships between the design task and the possible
linkages but also the formulation robustness.

2 Problem Formulation

A generic spatial four-bar linkage of the RCCC type is depicted
in Fig. 1. As the coupler link 3 moves, while visiting m given
poses besides the reference pose, the moving axes Z3 and Z4, rep-
resented by the dual unit vectors â0 and â

�
0 at the reference pose,

attain m locations. A line being defined by a point and a direction,
the line is short of one dimension2 to occupy a rigid-body pose.
Henceforth, a line location will be understood as given by four in-
dependent parameters, grouped in a six-dimensional array of
Pl€ucker coordinates [13]. The location of a rigid body, known as

Fig. 1 The RCCC linkage, where all four links are indexed with
numbers
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2Upon adding one dimension to a line, namely, a point outside of the line, a plane
is obtained, which is capable of attaining a full pose.
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the body pose, is defined by six independent parameters. A dis-
placement undergone by a line is also known as an incompletely
specified rigid-body displacement [14]. The m locations of the Z3-
axis are represented by the dual unit vectors ba1;…;bam, those of
the Z4-axis by ba�1;…;ba�m.

Likewise, the dual unit vectors of the fixed axes Z1 and Z2 are
represented by the dual unit vectors bb and bb�, respectively. With
the foregoing framework, the spatial Burmester problem is stated
as:

Find a spatial RCCC linkage that will conduct its coupler link
through a set S of m poses, given by the orthogonal matrices
fQjg

m
1 and points fRjgm

1 of the coupler link, of position vec-
tors frjgm

1 , defined with respect to a reference pose, given
by Q0 ¼ 1 and r0 ¼ 0.

In the above statement, 1 denotes the 3� 3 identity matrix and
0 the three-dimensional zero vector. Moreover, the body under
guidance is rigidly attached to link 3, and hence, the body poses
are referred to the frame with origin at R0, the reference position
of point R of Fig. 1, and axes X00;Y

0
0;Z

0
0, shown unsubscripted at

the arbitrary pose of link 3 in the foregoing figure. Furthermore,
in the problem at hand, m¼ 3.

3 Synthesis of CC and RC Dyads

The synthesis of the RCCC linkage is based on that of the four-
bar spherical linkage, shown in Fig. 2.

For quick reference, the synthesis of the spherical linkage is
briefly recalled. The main issue in this problem is the location of
the fixed axes OB and OB� as well as those of their moving coun-
terparts, OA and OA�, at the reference pose of the coupler link.
Within the approach adopted at the outset, one RR dyad

_
AB is

now synthesized. As the synthesis problem associated with this
dyad admits up to six solutions [11], the maximum number of
linkage solutions is 15, the number of combinations of six objects
taking two at a time.

Furthermore, the synthesis equations of the RR dyad of interest
rely on the constancy of angle a2 throughout the various locations
adopted by lines A and B as the coupler link visits the m given
poses, which in this case reduce to attitudes. Let a0 denote the
(unit) position vector of A0, i.e., the position of A at the reference
attitude of the coupler link, aj denoting the (unit) position vector
of the same point at the jth attitude of the same link. Constancy of
a2 throughout the m attitudes thus requires

aT
j b ¼ aT

0 b � cos a2; j ¼ 1;…;m (1a)

with b denoting the (unit) position vector of B, and aj obtained as
the image of a0 under a rotation represented by matrix Qj:

aj ¼ Qja0; j ¼ 1;…;m (1b)

We undertake now the synthesis of the CC and RC dyads. With
reference to the spatial linkage of Fig. 1, joint axes Z3 and Z4,
which define uniquely the coupler link, undergo a spatial motion
while visiting the m given poses. The spatial displacement of the
moving axis Z3 in terms of dual vectors can be described by mim-
icking Eq. (1b), if with the real quantities of this equation replaced
with dual quantities, namely,

baj ¼ bQjba0; j ¼ 1;…;m (2)

where ba0 is the dual representation of line Z3 at the reference pose
of the coupler link, while bQj is the dual orthogonal matrix repre-
senting the spatial displacement of the coupler link, namely,

ba0 ¼ a0 þ e�a0; bQj ¼ Qj þ e Qj (3)

where e is the dual unity, which verifies e 6¼ 0; e2 ¼ 0, and a0

denotes the unit vector parallel to Z3 at its reference pose, while
�a0 the moment of the same axis with respect to the origin R0 of the
frame {X00;Y

0
0;Z

0
0}, with subscript 0 denoting the reference pose

of the frame attached to link 3 in Fig. 1. Moreover, Qj is the
proper orthogonal matrix that rotates the coupler link from its 0th
to its jth attitude. In addition, Qj is the product of a translation
matrix Rj by Qj, i.e.,

Qj ¼ RjQj (4)

with Rj defined as the cross-product matrix of vector rj, i.e.,
Rj � CPMðrjÞ � @ðrj � vÞ=@ðvÞ; 8v 2 R3, for a translation rj of
point R at the jth pose of link 3.

As the relative location of Z3 with respect to Z2 remains con-
stant throughout the motion of the coupler link, the dual angle
between the two axes remains constant, and hence,

baT
j
bb ¼ cosða2 þ ea2Þ � cos a2 � ea2 sin a2; j ¼ 0;…;m (5)

where bb is the dual unit vector representing the Z2 axis, which
includes point B, is given by

bb ¼ bþ e�b (6)

with a2, a2, and b shown in Fig. 1, while vector �b denotes the
moment of Z2 with respect to R0. Subtracting the 0th equation
from its m remaining counterparts, Eq. (5) leads to

ðbaj � ba0ÞTbb ¼ 0; j ¼ 1;…;m (7)

In the sequel, a single notation for the mþ 1 location of the
Z3-axis will be needed. To avoid double subscripts, Z3 will be la-
beled line A. Now, the geometric interpretation of Eq. (7) is that,
as line A adopts the set of locations fAjgm

1 , it remains equidistant
from Z2, which means that line Aj remains at the same Euclidian
distance from and making the same angle with Z2. As a conse-
quence, Eq. (7) constrains line A to be a line of the same regulus
of a single-fold hyperboloid of revolution of axis Z2.

Equation (7), upon expansion into its primal and dual parts, for
j ¼ 1;…;m, yields two systems of real scalar equations

aT
0 ðQT

j � 1Þb ¼ 0 (8a)

aT
0 Q

T

j bþ aT
0 ðQT

j � 1Þ�bþ �aT
0 ðQT

j � 1Þb ¼ 0 (8b)

whose unknowns, a0; �a0;b, and �b, are subject to the constraints

aT
0
�a0 ¼ 0; bT�b ¼ 0 (9a)

Fig. 2 The spherical 4R linkage, where all four bodies are
indexed with numbers
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jja0jj2 ¼ 1; jjbjj2 ¼ 1 (9b)

We thus have m real equations (8a) for the primal and m
real equations (8b) for the dual part. Of these, Eq. (8a) involves
only unit vectors of the joint axes, while Eq. (8b) involves
both unit and moment vectors. Therefore, while the left-hand
side of Eq. (8a) is dimensionless that of Eq. (8b) has units of
length. The first set is called the direction, the second the
moment equations [11]. Both sets stand for the basic geometric
constraints on different dyads, including CC, RC, and RR. Fur-
thermore, Equations (8a) are exactly the synthesis equations for
the spherical four-bar linkage, illustrated in Fig. 2, under motion
generation.3

The direction equations (8a) are independent of the moment
equations (8b), which means that the unit vectors a0 and b are
determined by direction equations alone, if these involve as
many equations as unknowns. This is the case of synthesis for
five prescribed poses. On the other hand, the moment equations
include the unit vectors a0 and b. Moreover, these equations are
linear in the dual parts, which means that, upon solving for the
unit vectors, the dual parts can be obtained from linear
equations.

3.1 The CC Dyad. The CC dyad under synthesis consists of
one rigid link and two C joints. The dyad can be geometrically
regarded as a link composed of two skew lines, joined to each
other by means of a third line, their common normal, for example.
A CC dyad is thus determined once the two skew lines are known.
The problem of CC-dyad synthesis thus reduces to locating the
two joint axes. The latter can be uniquely described by means of
the dual vectors ba0 and bb, which comprise a total of 12 scalar
components. Note that a0 and b are unit vectors, while a line can
be regarded as a zero-pitch screw [11], as expressed by Eqs. (9a)
and (9b). Those four scalar constraints thus reduce the number of
independent variables to only eight.

Equations (8a) and (8b) lead to 2 m synthesis equations for m
given poses. For the number of given poses to yield as many equa-
tions as unknowns, i.e., eight, one must have 2m ¼ 8. The system
thus admits exact solutions for CC dyads in the case of m¼ 4, i.e.,
for five given poses, a well-known result.

Knowing that the direction equations are independent of the
moment equations, we can find first the direction vectors a0 and b
through Eqs. (8a). These equations, identical to those of the
Burmester problem for spherical linkages, admit at most six real
solutions. With each such solution, the moment equations become
linear in the moments, namely,

pT
j �a0 þ qT

j
�b ¼ wj; j ¼ 1;…;m (10)

with

pj ¼ ðQT
j � 1Þb; qj ¼ ðQj � 1Þa0; wj ¼ �aT

0 Q
T

j b (11)

Equations (9a) and (10) amount to six linear equations for six
unknowns in the case of m¼ 4, thus defining a unique pair of
moments, �a0 and �b, in the absence of singularities.

The six linear equations mentioned above can be cast in vector
form, namely,

Mx ¼ n (12)

where

M ¼

pT
1 qT

1

pT
2 qT

2

pT
3 qT

3

pT
4 qT

4

aT
0 0T

0T bT

266666666664

377777777775
; x ¼

�a0

�b

" #
; n ¼

w1

w2

w3

w4

0

0

266666666664

377777777775
(13)

with 0 denoting the three-dimensional zero vector; hence, M is
apparently a 6� 6 matrix.

Equation (12) admits unique solutions for five given poses
(m¼ 4). With four poses given (m¼ 3), a total of five equations
are obtained from Eqs. (8a) and (8b). In this case, the system of
synthesis equations is underdetermined, and, hence, infinitely
many solutions are possible. These solutions can be regarded as
sets of lines, called congruences, which define the moving and
fixed axes. The generation of line congruences is described in
Sec. 4.

3.2 The RC Dyad. A RC dyad is composed of a revolute and
a cylindrical joint. The synthesis equations for the CC spatial
dyad also apply to the RC dyad. Moreover, compared with the CC
dyad, the RC dyad is subject to one constraint: the sliding sj along
the fixed axis, shown in Fig. 3, is zero. This constraint can be
expressed in terms of the dual vector of the common normal.

For the jth pose, the common normal to Aj and Z2 is given by
the normalized—i.e., of dual unit norm—vector baj � bb, denoted
by bnj, namely [10]

bnj ¼ nj þ e�nj; j ¼ 0;…;m (14)

with

nj ¼
1

sina2

ða�bÞ; �nj ¼
1

sina2

ðaj� �bþ�aj�bÞ�a2 cosa2

sin2 a2

ðaj�bÞ

(15)

where a2 and a2 are the distance and the angle between Aj and Z2,
respectively. The dual angle between two poses of the common
normals, bnj and bn0, can be found from

cos b̂j ¼ bnT
j bn0; j ¼ 1;…;m (16)

Fig. 3 A CC dyad, which becomes a RC dyad if the sliding sj

vanishes

3That is, if abstraction is made of the translation of the coupler link when
formulating the problem stated in Section 2, then points Rj, for j¼ 1, …,m, coincide
with point R0, and the problem at hand becomes one of spherical-linkage synthesis.
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where b̂j ¼ bj þ esj, with bj and sj denoting the jth rotation and
the jth sliding of the R joint of Fig. 3, respectively. Equating the
dual parts of the expanded equation (16) leads to

� sj sin bj ¼
1

sin3 a2

ðAja2 cos a2 � Bj sin a2Þ (17)

with

Aj ¼ 2ða0 � bÞTðaj � bÞ (18)

Bj ¼ ða0 � bÞTðaj � �bþ �aj � bÞ þ ðaj � bÞTða0 � �bþ �a0 � bÞ
(19)

For RC dyads, sj¼ 0, while, for spatial dyads, sin a2 does not
vanish,4 and, hence, Eq. (17) yields

Aja2 cos a2 � Bj sin a2 ¼ 0; j ¼ 1;…;m (20)

which is the set of constraint equations needed to guarantee the
vanishing of the sliding on the fixed axis.

An Alternative Formulation: Equation (20) leads to a lengthy
expression, as seen from Eqs. (18) and (19), while a2 and a2 are
design variables. A simpler expression of the constraint can be
derived from the geometric relationship between three vectors,
namely, the common normal vector and the two unit vectors paral-
lel to lines Aj and Z2. With reference to Fig. 3, where Bj and Nj

are the intersections of the common normal N j with lines Z2 and
Aj, point A0 being located on the coupler link and lying in line Aj.

Because of the constraint on the R joint, Bj remains at the same
location as B. Henceforth, Bj is thus replaced by B. Three vectors,
namely, aj;nj, and rAj � rB, for j ¼ 1;…;m, must remain coplanar
for all configurations, as illustrated in Fig. 4. This constraint is
expressed as

aj � nj � ðrAj � rBÞ ¼ 0; j ¼ 1;…;m (21)

where rAj ¼ rj þQjrA0 and nj ¼ aj � b. In this formulation, the
unknowns are rB and rA0, in addition to b and a.

The initial configuration, for j¼ 0, defines where the two points
A0 and B are located. As A0B is a segment of the common normal
to the lines Z2 and Aj, the conditions below have to be met

a0 � ðrA0 � rBÞ ¼ 0; b � ðrA0 � rBÞ ¼ 0 (22)

Apparently, the foregoing moment equations bear units of length.
To make the solution scale-independent, it is advisable to normal-
ize the lengths, which can be achieved by making use of a
characteristic length, denoted as k. Equations (21) and (22) can
be normalized with the characteristic length, to be defined in
Sec. 3.2.1, as

aj � nj � dj ¼ 0; j ¼ 1;…;m (23)

a0 � d0 ¼ 0; b � d0 ¼ 0 (24)

where dj ¼ ðrAj � rBÞ=k; j ¼ 0;…;m. Equations (23) and (24)
represent the geometric constraints for a RC dyad on the vanish-
ing of the R joint sliding.

3.2.1 Equation Normalization. In following common engi-
neering practice, the moment equations are henceforth normal-
ized, upon dividing them by the characteristic length k obtained
from the problem data and introduced in Eq. (23).

It is known that, to any rigid body motion, a displacement
screw is associated, which is determined by a line L, the screw
axis, and a pitch p. It is known, moreover, that the displacement
of any point on the body has the same projection onto the axis of
rotation [15]. For the displacement from the reference pose to the
jth pose, this projection, dj, is given by

dj ¼ ej � rj; j ¼ 1;…;m (25)

where ej is the unit vector parallel to the axis of rotation and rj the
displacement of point R of the coupler link. Noting that the dis-
placement involves a rotation wj, the “pitch” of the associated
displacement screw is thus5

pj ¼ dj=wj (26)

The characteristic length is defined as [17]

k ¼ max
j
fjpjjgm

1 (27)

The equation involving the moments �aj and �b is now normalized
upon dividing the vectors by k, which thus leads to the nondimen-
sional variables

uj ¼
1

k
�aj; v ¼ 1

k
�b (28)

3.3 Approximate Solution of the RC-Dyad Synthesis. For a
RC spatial dyad, we have so far formulated constraint equations
(8a), (8b), (23), and (24), which amount to 3 m equations for m
poses. Note that the problem bears eight independent unknowns,
which means that, for a RC-dyad synthesis problem to lead to as
many equations as unknowns, m must be 8/3, which implies that a
RC-dyad can be synthesized only for m¼ 2, or three prescribed
poses. This result is well reported in the literature [3,10,11].

The problem at hand is the synthesis with m¼ 3, which implies
that the number of equations exceeds that of unknowns by one.
We have to resort to an approximate method for its solution. The
synthesis task is thus formulated as a constrained optimization
problem

zðxÞ ¼ 1

2
fTðxÞfðxÞ ! min

x

s:t: gðxÞ ¼ 0

(29)

Fig. 4 Geometric relations in the RC dyad

4Angles aj, for j¼ 1, 2, 3, 4, are associated with a spherical linkage, which does
not admit values.

5Should the jth displacement be a pure translation, pj would tend to 1; in this
case, rather than the pitch, the translation dj would be used, as the authors suggested
for the planar case [16].
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where x ¼ ½aT
0 ; b

T ; uT
0 ; v

T �T and fðxÞ is a six-dimensional vector
function of x, whose components are

fj ¼ aT
0 ðQT

j � 1Þb;

fjþ3 ¼
1

k
aT

0 Q
T

j bþ aT
0 ðQT

j � 1Þvþ uT
0 ðQT

j � 1Þb; j ¼ 1; 2; 3

(30)

The set of constraint equations gðxÞ ¼ 0 consists of Eq. (9b) for
unit constraints and Eqs. (23) and (24) for the vanishing of the
sliding, the latter having to be normalized with the characteristic
length defined in Sec. 3.2.1.

3.3.1 Unified Synthesis Equation. Problem (29) was formu-
lated for RC dyads. It is applicable to CC dyads as well, if we
remove the constraints for the vanishing sliding on the fixed axis.
Alternatively, we could include additional constraints based on
design requirements. For example, in designing a linkage for the
closing and the opening of the doors of a fancy sports car, the de-
signer may want to have the axis of the driving joint located at a
particular place with respect to the door at the closed location. In
this way, the formulation ends up with a set of unified synthesis
equations applicable to both RC and CC dyads. While this formu-
lation allows only for an approximate solution for the RC dyad, it
leaves room for imposing additional constraints on the CC dyad.

4 Congruences of Fixed and Moving Axes

The synthesis of CC dyads that guide a rigid body through four
given poses admits infinitely many solutions. These solutions are
sets of lines for the moving and fixed axes, called congruences. In
the synthesis of planar four-bar linkages with four given poses,
circlepoint and centerpoint curves are generated to select pivoting
points for moving and fixed-joint centers, respectively. Analogous
to the planar case, congruences can be defined for the moving and
fixed axes of the CC dyads.

Murray and McCarthy [8] developed a parametrization tech-
nique for the central-axis congruence of the four-pose rigid-body-
guidance problem, utilizing the dual crank angle of rotation as
generation parameter. Larochelle [6] developed a procedure to
determine the two congruences, whereby the input angle at one
joint was discretized to generate the sets of congruences. For each
input angle, by assigning the distance between the fixed and the
moving axes to two solution lines, Larochelle solved his synthesis
equations for two corresponding lines. The two lines were further
parameterized to define a plane, i.e., a congruence.

An alternative method of defining and generating line con-
gruences that may be used for fixed and moving axes was pro-
posed in Ref. [10]. The method exploits the three constraint
equations, as recalled below.

The direction equations for the four given poses can be
rewritten as

Cb ¼ 0; C ¼
qT

1

qT
2

qT
3

264
375 (31)

where qj; j ¼ 1; 2; 3; are defined in Eq. (11).

The 3� 3 matrix C must thus be singular, which means that,
under the four given poses

Fða0Þ � detðCÞ ¼ ðq1 � q2Þ � q3 ¼ 0 (32)

Equation (32) defines a conic surface in Cartesian space. Its
intersection with the unit sphere yields a spherical curve, which is
called the spherical circlepoint curve. Each point on the curve
defines a possible unit vector for the moving axis.

Likewise, the equation for the unit vector of the fixed axis has
the form

GðbÞ � detðDÞ ¼ ðp1 � p2Þ � p3 ¼ 0 (33)

with

D �
pT

1

pT
2

pT
3

264
375 (34)

The intersection of the cubic surface described by the above
equation with the unit sphere yields the spherical centerpoint
curve. Each point on the latter corresponds to a unit vector for the
fixed axis.

Now, as per Eq. (11), pj is linear homogeneous in b, while qj is
likewise in a0. Consequently, Eq. (32) is cubic homogeneous in
a0, while Eq. (33) is cubic homogeneous in b. This means that
Eq. (32) represents a surface that passes through the center O of
the sphere, i.e., the origin of any of the coordinate frames at hand.
Moreover, the line passing through O in the direction of b sweeps
a conic surface of apex O, the counterpart of the centerpoint curve
in the planar case. Chiang [18] calls this spherical curve the cen-
terpoint curve, exactly as in the planar case, with the understand-
ing that this curve is spherical.

Likewise, Chiang calls the counterpart intersection of the conic
surface swept by the line stemming from O and directed along the
unit vector a0 with the unit sphere the circlepoint curve. McCarthy
and Soh [11] term the foregoing conic surfaces the center-axis
cone and the circling-axis cone, respectively. In this work, we
adopt the terminology of spherical centerpoint and circlepoint
curves, while recognizing their corresponding geometric entities
of the spherical cones.

Note that the spherical centerpoint and the circlepoint curves
are linked through the direction constraint equation (8a). This
means that each point on one of the two curves has its unique
image on the other curve.

The dual vector parts of the two axes, i.e., the moments a0 and
b, can be found from Eq. (12). However, for the four-pose case,
M of Eq. (12) is of 5� 6, and the system is underdetermined. The
solution proposed in Ref. [10] is to add a sixth row,
mT

6 ¼ ½1; 0; 0; 0; 0; 0�
T
, to matrix M; correspondingly, the right-

hand side of Eq. (12) becomes n ¼ ½w1;…;w3; 0; 0; n�T, which
means that the x-component ð�a0Þx of �a0 is assigned a variable
value n. If the choice of m6 happens to render M singular, then
another component of �a0 should be chosen instead.

Because of the algebraic coupling between �a0 and �b, the latter
also turns out to be a function of parameter n. In this case,
Eq. (12) thus yields the moments sought as linear, nonhomogene-
ous functions of parameter n. We thus obtain solution axes in the
form of Pl€ucker coordinates ½aT

0
�aT

0 ðnÞ�
T

and ½bT �bTðnÞ�T , each
standing for a continuous set of parallel lines lying in a plane. With
this method, the congruences can be generated directly for any
given input angle (orientation), without solving again the synthesis
equation, which gives computation advantage over other methods.

4.1 A Robust Formulation of CC-Dyad Synthesis for Four
Poses. In the method recalled above from Ref. [10], the
x-component of �a0 is selected as the parameter in defining con-
gruences. Obviously, this is an element of arbitrariness that can
lead to singularities or ill-conditioning, when the x-component of
�a0 is equal or very close to zero. In order to cope with this short-
coming, a robust formulation is proposed below.

The synthesis equation of CC-dyads with four poses (m¼ 3) is
formulated as in Sec. 3.1, with the provision that, in that section,
m was 4. We thus still have

Mx ¼ n (35)

but with M and n of reduced dimensions
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M ¼

pT
1 qT

1

pT
2 qT

2

pT
3 qT

3

aT
0 0T

0T bT

266666664

377777775; x ¼
�a0

�b

" #
; n ¼

w1

w2

w3

0

0

266666664

377777775 (36)

and

wj ¼ �aT
0 Q

T

j b; j ¼ 1; 2; 3 (37)

As matrix M is of 5� 6, the foregoing system of equations is
underdetermined, and hence, admits infinitely many solutions.
The infinity of solutions of Eq. (35) can be represented as

x ¼M†nþ xn; M† �MTðMMTÞ�1
(38)

where M† is the right Moore–Penrose generalized inverse of M,
and xn a particular solution that lies in the null space of M.

Here, a clarification is in order: generalized inverses have been
found in the literature on kinematics, mainly in the realm of screw
theory, to lead sometimes to meaningless sums of terms with dis-
parate units. Not in the case at hand. Indeed, M is first partitioned
row-wise into two blocks

M ¼
Mu

Ml

" #
; Mu ¼

pT
1 qT

1

pT
2 qT

2

pT
3 qT

3

264
375; Ml ¼

aT
0 0T

0T bT

" #
(39)

where it is recalled, 0 denotes the three-dimensional zero vector.
Therefore,

MMT ¼
MuMT

u MuMT
l

MlM
T
u MlM

T
l

" #
¼

MuMT
u MuMT

l

MlM
T
u 12

" #
(40)

with 12 denoting the 2� 2 identity matrix, which occurs in the
foregoing lower-diagonal block, because both a0 and b are unit
vectors, as per Eqs. (9a) and 9(b). The upper diagonal block has
units of length-squared, while the two off-diagonal blocks have
units of length. Therefore, although the different blocks bear dis-
tinct units, no sums of incompatible terms occur.

The numerical procedure to obtain robustly the solution (38),
which should be taken as a formula, and not as a computational
means, is derived below

Let the QR-decomposition of MT be [19]

MT ¼ QR; Q ¼ QL qr½ �; R ¼ U

0T
5

� �
(41)

where Q is a 6� 6 orthogonal matrix—not to be confused with its
subscripted counterpart of Eq. (1b), and, even worse, not necessar-
ily proper—while R is a 6� 5 matrix, QL is of 6� 5, qr is a six-
dimensional vector that spans the null space of MT [19], U is a
5� 5 upper-triangular matrix that is nonsingular if M is of full
rank, and 05 is the five-dimensional zero vector. Moreover, the
first term of the right-hand side of Eq. (38) can be shown [19] to
reduce to

M†n ¼ QLU�Tn � xo (42)

which is the minimum-norm solution of Eq. (35). Vector xn, in
turn, can be obtained as a multiple of qr , namely,

xn ¼ sqr; s 2 R (43)

In summary, then, the set of solutions of Eq. (38) can be
represented as

x ¼ xo þ sqr (44)

thereby obtaining a continuum of solutions with s as a real
parameter.

Further, xo and qr are partitioned into two three-dimensional
blocks, the two blocks providing the solutions sought

xo ¼
�ao
�bo

� �
; qr ¼

qa

qb

� �
(45)

Hence, the continuum of solutions to Eq. (38) can be expressed as

�a0ðsÞ ¼ �ao þ sqa; �bðsÞ ¼ �bo þ sqb; s 2 R (46)

Therefore, the lines sought, Z2 and ðZ3Þ0—Z3 at the linkage ref-
erence posture—are given by the six-dimensional arrays of

Pl€ucker coordinates ½aT
0 ; �a

T
o þ sqT

a �
T ; ½bT ; �bT

o þ sqT
b �

T
, respectively.

That is, the directions of Z2 and ðZ3Þ0 are given by the infinite set
of points on the spherical centerpoint and circlepoint cubics,
respectively, to each point on one, there corresponds one and only
one on the other. Moreover, once the direction of each axis has
been chosen from the two curves, their moments, i.e., the location
of these two axes, are not unique, but linear, nonhomogeneous
functions of the real parameter s. The sets of lines are the line con-
gruences sought.

In order to find the location of the points of Z2 and ðZ3Þ0 closest
to the origin R0 of the reference frame depicted in Fig. 1, we resort
to the relations used in Ref. [10]. If rB and rA0 denote, respec-
tively, the position vectors of the foregoing points, then

rA0 ¼ a0 � �ao; rB ¼ b� �bo (47)

Now, since �ao is normal to a0 and �bo is normal to b, and both
a0 and b are unit vectors, it is apparent that

jjrA0jj ¼ jj�aojj; jjrBjj ¼ jj�bojj (48)

Therefore, since �ao and �bo are both of minimum norm, rA0 and rB

are also of minimum norm.
From the foregoing result, we have that

• given the freedom of choice of a0 and b in the foregoing
problem, CC-dyad synthesis, these two vectors can be used
as design variables to minimize some dimensions, which
should lead to a compact linkage.

• the line congruences allow for the compliance of additional
design requirements, like avoidance of branching defect or
the optimization of the transmission angle, once one of the
two synthesized dyads has been designated as the input link.

5 Examples of Synthesis

We include here examples of spatial linkage synthesis to dem-
onstrate the foregoing method. In the examples, the orientation is
described with natural invariants [15], i.e., the unit vector ej of
the axis of rotation and the angle of rotation uj, at the jth pose.
The rotation matrix at this pose then takes the form [15]

Table 1 Four given poses for Example 1

No. uj (rad) eT
j rT

j (�10�2)m

1 0 [0, 0, 1] [0, 0, 0]
2 1.3690 ½0:1012; 0:6926;�0:7140� ½�5:6704;�59:9654;�58:752�
3 1.8602 ½0:1542; 0:6014;�0:7838� ½�26:7146;�85:4686;�72:5116�
4 1.5707 ½0:0; 0:3714;�0:9284� ½�16:6844;�110:0923;�54:7153�
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Qj ¼ 1þ sin ujEj þ ð1� cos ujÞE2
j (49)

where Ej denotes the cross-product matrix of ej.

In the synthesis of the RC dyad for four prescribed poses, a sys-
tem of 11 equations, (8a), (8b), (23), and (24), is obtained. The
unknowns at hand include the six components of the two unit vec-
tors and the six components of the two moment vectors. Upon
introducing spherical coordinates on the unit sphere, two variables
are eliminated

a0 ¼

cos /a cos ha

cos /a sin ha

sin /a

2664
3775; b ¼

cos /b cos hb

cos /b sin hb

sin /b

2664
3775 (50)

where haðhbÞ and /að/bÞ are the longitude and the latitude of
spherical coordinates. The unit-vector constraints are therefore no
longer required, the synthesis problem involving only eight
unknowns.

5.1 Example 1

5.1.1 RC-Dyads. The given poses are displayed in Table 1,
where translations carry units of length, as specified. The charac-
teristic length was calculated as 6:3� 10�2 m, which was used to
normalize the “moment” synthesis equations. A set of approxi-
mate solutions is obtained from Eq. (29), as listed in Table 2. The
synthesis error, namely, zðxÞ in this case, is found as a nondimen-
sional 1:84� 10�6, which is a good result in approximate synthe-
sis. The results are further examined graphically, as shown in
Fig. 5, where links are represented by sticks. A zoom-in of the
revolute joint reveals that the vanishing–sliding condition is met
by the synthesized linkage.

5.1.2 CC-Dyad. For the four given poses of Example 1, the
associated spherical centerpoint and circlepoint curves are dis-
played in Fig. 6, on the unit sphere. Of these, the circlepoint curve
is selected to generate the line congruences. Figure 7 shows the
congruences of the fixed and moving axes, where long solid edges
on each plane indicate the direction of the set of lines. Note that a
number of points are selected from the circlepoint curve, as illus-
trated in Fig. 6(b), to generate the congruences with a clear view.
A CC dyad can be selected from the congruences. Alternatively,
the dyad can be generated from Eq. (29), which yields an approxi-
mate solution.

5.2 Example 2. In the second example, the pose data from
Ref. [20] are adopted, as listed in Table 3. Using the same
approach, a RC dyad is synthesized as listed in Table 4, for which
the synthesis error, in terms of zðxÞ, is equal to 1:125� 10�8. It is
noted that the solution is not the same as Ref. [20], which is not sur-
prising, as the objective functions in the two cases are different.

The RC dyads in both examples were synthesized approxi-
mately with “small” synthesis errors of Oð�4Þ. In certain cases,
the synthesis may end up with a large error, for which an adjust-
ment of the synthesis task might be needed, for example to adjust
the pose of one of the intermediate poses. Notice that zðxÞ being
one-half the square of the nondimensional approximation error, a
value of Oð�8Þ implies an approximation error of Oð�4Þ. Finally,
the error being nondimensional, its order of magnitude indicates
the “size” of the approximation error.

Table 2 Real solutions for a RC dyad of Example 1

Solution

a0; �a0 ½�0:1985; 0:5897;�0:7828�, ½35:0102;�53:4036;�49:1070� (�10�2Þm
b; �b ½�0:0490;�0:7086; 0:7038�, ½�35:6810; 41:2826; 39:0801� (�10�2Þm

Fig. 5 RC dyad generated from synthesis results: (a) in the ref-
erence configuration, where links are numbered with respect to
Fig. 1; (b) in all four poses; and (c) zoom-in of the revolute joint
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6 Conclusions

The spatial Burmester problem was revisited with focus on the
synthesis of the RCCC linkage for four prescribed poses. The syn-
thesis equations were derived for spatial RC and CC dyads. The
formulation allows the approximate synthesis of the RC-dyad.
The formulation is also applicable to CC dyads to yield a feasible
solution, when the constraint equations are reformulated, thereby
leading to a unified approach for the two cases. This is a first con-
tribution of the paper.

Another contribution lies in the robust formulation of the
CC-dyad synthesis equations, from which the congruences to
determine fixed and moving axes can be synthesized robustly.
Robustness means insensitivity to spurious singularities and ill-
conditioning when arbitrarily choosing a given parametrization.

While infinitely many exact solutions to the problem of
CC-dyad synthesis exist for the four-pose rigid-body-guidance
problem, the RC-dyad synthesis admits only approximate solu-
tions, the RCCC linkage thus being capable of visiting four pre-
scribed poses approximately. In practical applications, additional
constraints can be introduced, for example, the volume occupied
by the linkage, or visiting one specific pose exactly, as in pick-
and-place operations.
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