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Spherical parallel manipulators (SPMs) with revolute joints work under the condition that all
joint axes intersect at the manipulator center, where the mobile platform (MP) center is
coincident with the center of the base platform. The center of each platform is the point of
concurrence of the axes of the three revolute joints attached to the platform. When limb
flexibility is considered, however, the MP center will shift away from the base platform center,
which consequently influences the manipulator performance, e.g., its orientation accuracy. In
this work, the stiffness of SPMs is analyzed, with focus on the MP center shift. The stiffness is
modeled by adopting the virtual-spring method. Castigliano's theorem is used to calculate the
limb deflection. The model is validated via FE analysis. Examples are included to show the
center shift of SPMs with different designs.

© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

A fundamental assumption for spherical parallel manipulators (SPMs) is that all links of the manipulator rotate about the
manipulator center [1], i.e., the point of concurrency of the axes of all nine revolute joints. This assumption is valid for rigid-body
motion or manipulators consisting of a ball-and-socket joint as the center of rotation. However, in the presence of link flexibility,
the axes of all joints may not intersect at one common point. In other words, the center of the mobile platform (MP) will shift
away from the center of the base platform. As this shift will consequently influence the performance of the manipulator
orientation accuracy, it is important to investigate this shift from a design perspective.

The center shift in question is the result of limb deformation, which can be quantified based on stiffness analysis. Of the
existing methods of stiffness modeling, the Virtual Joint Method (VJM), which is often called lumped modeling, has been widely
used to establish the stiffness model for parallel manipulators (PMs), as it provides acceptable accuracy in short computational
time. Gosselin first applied this approach to parallel manipulators [2], in which only actuator compliance was taken into account
under an unloaded equilibrium condition. Chen and Kao proposed the Conservative Congruence Transformation (CCT) [3] to
analyze the influence of changes of the robot geometry on the manipulator stiffness due to an external wrench. In general, link
flexibility was considered in the stiffness modeling. In Gosselin and Zhang's work [4], the flexible links were replaced with rigid
beams mounted on revolute joints supplied with torsional springs. This flexible-link, lumped-parameter model was also used by
Majou et al. [5] to characterize the stiffness of the Orthoglide robot. Quennouelle and Gosselin considered the influence of the
passive joints during stiffness modeling [6]. Combining the advantages of the existing methods, a systematic virtual-spring
method was proposed to analyze translational parallel manipulators [7], which considers the link deflection and the influence of
the passive joints simultaneously. The difference among the various VJM approaches lies in both the modeling assumptions and
the numerical techniques. The stiffness of different types of PMs has been extensively investigated, whereas the stiffness
modeling and analysis of this class of SPM have received less attention. Liu et al. [8] developed a stiffness model based on
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Gosselin's work [2], in which only the actuation compliance is considered. Recently, the stiffness analysis of a 3-RRP SPM was
conducted on the basis of strain energy and Castigliano's theorem, while ignoring the influence of the passive joints and strain
energy due to shear forces [9]. As SPMs are widely used as orientating devices, the previous stiffness analyses were limited to
investigate the orientational deformation. However, the translational deformation of SPMs is an important consideration [10]. It is
known that in the VJM approach, the Cartesian stiffness matrix relies on the calculation of both the mechanism Jacobian and
stiffness matrices in joint space. When applying the virtual spring method to SPMs, one challenge is the computational burden of
the complicated kinematics problem due to the products of trigonometric functions, since the inverse-kinematics solutions of all
the limbs are to be solved in advance, to derive the Jacobian, as in Pashkevich's approach [7]. Thus, a simple and fast procedure is
needed for modeling the stiffness of SPMs to investigate both the position and orientation accuracies.

In this paper, the MP center shift of spherical parallel manipulators is studied. A method to model the stiffness of SPMs for the
analysis of the shift is developed and validated through FE analysis. We adopted the virtual-spring method in connection with
Castigliano's theorem to calculate the limb stiffness in SPMs. Examples are included to illustrate the application of the method.
2. Problem formulation

A general spherical parallel manipulator is shown in Fig. 1. The ith limb consists of three revolute joints, whose axes are
parallel to the unit vectors ui, vi, andwi. All three limbs have identical architectures, defined by angles α1 and α2. Moreover, β and
γ define the geometry of two triangular pyramids on the base and the mobile platforms, respectively. The origin O of the base
coordinate system xyz is located at point O. The z axis is normal to the bottom surface of the base pyramid and points upwards,
while the y axis is located in the plane made by the z-axis and u1.

Under rigid-body motion, all the joint axes intersect at one point, namely, point O in Fig. 2(a). In a real-life system the
manipulator will deform when subjected to external loads. Assuming that both the MP and the base platform are rigid, while the
limb links are linearly elastic, the SPM will have two centers, one on the base platform, and one on the MP, which is movable, as
illustrated in Fig. 2(b). The modeling of the shift of the MP center and the associated orientation error are the main issues studied
here.
3. Error modeling of SPMs

Under the prescribed coordinate system, unit vector ui is derived as
where
ui ¼ —sinηi sinγ cosηi sinγ —cosγ
� �T ð1Þ

ηi = 2(i − 1)π/3, i = 1, 2, 3.
Fig. 1. Architecture of a general SPM.



Fig. 2. Center separation of a SPM under an external wrench due to link flexibility.
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The unit vector vi of the axis of the intermediate revolute joint in the ith leg is expressed as:
vi ¼
—sη i sγcα1 þ cη isθ i—sη icγcθ ið Þsα1
cη i sγcα1 þ sη isθ i þ cη icγcθ ið Þsα1

—cγcα1 þ sγcθ isα1

2
4

3
5 ð2Þ
The unit vector wi of the top revolute joint in the ith leg is a function of the orientation of the mobile platform, namely,
wi ¼ wix wiy wiz

h iT ¼ Qw�
i ð3Þ

Q is the rotation matrix that carries the MP from its reference orientation to the current one andwi
∗ is the unit vector of the
where

axis of the top revolute joint in the ith leg when the mobile platform is in its reference orientation, which is given as
w�
i ¼ —sinη isinβ cosη isinβ cosβ½ �T ð4Þ
Let the input error of the SPMs be Δx, the orientation error of the mobile platform Δφ under rigid-body motion being derived
from
JΔφ ¼ Δx ð5Þ

Δx = [Δθ1 Δθ2 Δθ3]T and Δφ = [Δφx Δφy Δφz]T. Moreover, J = [j1 j2 j3]T is the kinematic Jacobian matrix of the
where
manipulator [11], and ji = (vi × wi)/(ui × vi ⋅ wi).

3.1. The Cartesian stiffness matrix

Tomodel the center shift and orientation error for SPMswith flexible limbs,we need to find the overall stiffness of themanipulator
structure. The virtual-spring method is adopted in this work for stiffness modeling. In this method, link flexibility is replaced by an
n-dof virtual spring associated with the mobility freedoms describing both the static translational and rotational deflections and the
coupling between them, where the spring compliance is calculated by means of Euler–Bernoulli beam theory. The flexibility of the
single kinematic leg of the SPM in question is illustrated in Fig. 3(a), in accordance to the force diagram of Fig. 3(b) and the associated
deflection and joint displacements in Fig. 3(c), the corresponding virtual springs and passive joints being described below:

• a 1-dof virtual spring representing the actuator stiffness defined by the deflection Δθi;
• a 6-dof virtual spring describing the stiffness of the proximal curved link defined by the rotational deflection Δui1 = [Δu1i , Δu2i ,
Δu3i ]T and translational deflection Δui2 = [Δu4i , Δu5i , Δu6i ]T;



Fig. 3. Flexible model of a single limb: (a) virtual spring model, where Ac stands for the actuator, Re for revolute joint; (b) force diagram of the ith limb, where τm

and τf stand for the moments and forces in frame r1i vin1
i (r2i win2

i ); (c) link deflections and joint displacements in the ith leg.
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• a 1-dof passive R-joint between the two links in each leg, allowing one rotational displacement Δψi;
• a 6-dof virtual spring describing the stiffness of the distal curved link defined by the rotational deflection Δui3 = [Δu7i , Δu8i , Δu9i ]T

and translational deflection Δui4 = [Δu10i , Δu11i , Δu12i ]T;
• a 1-dof passive R-joint between the distal curved link and the moving platform, allowing one rotational displacement Δξi.

The center of the SPM, or the center of the base frame, is the designated origin of the reference frame of the mobile platform.
The small-amplitude deformation screw of the MP can be expressed as:
with

with
$iO ¼ Δφ
Δp

� �
¼ JiϕΔϕi þ JiuΔui ð6Þ

J iϕ ¼ $̂
i
A $̂

i
B $̂

i
C

h i
; Δϕ i ¼ Δθ i Δψ i Δξ i½ �T ð7aÞ

J iu ¼ $̂
i
u1 $̂

i
u2 … $̂

i
u12

h i
; Δu i ¼ Δui

1 Δui
2 … Δui

12

h iT ð7bÞ
The corresponding unit screws are expressed as
$̂
i
A ¼ u i

0

� �
; $̂

i
B ¼ v i

0

� �
; $̂

i
C ¼ w i

0

� �

$̂
i
u1 ¼ r i1

b i�r i1

" #
; $̂

i
u2 ¼ $̂

i
B; $̂

i
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1

b i�n i
1

" #
; $̂

i
u4 ¼ 0

r i1

� �
; $̂

i
u5 ¼ 0

v i

� �
; $̂

i
u6 ¼ 0

n i
1

� �

$̂
i
u7 ¼ r i2

c i�r i2

" #
; $̂

i
u8 ¼ $̂

i
C ; $̂

i
u9 ¼ n i

2

c i�n i
2

" #
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i
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� �
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i
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w i

� �
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i
u12 ¼ 0

n i
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� �
ð8Þ
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1 ¼ ui�vi

ui�vik k ; ri1 ¼ vi�ni
1

vi�ni
1

�� �� ; ni
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2

wi�ni
2

�� �� ð9Þ



with
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Δp = [Δx, Δy, Δz]T is the vector of positional error of the center of rotation. Moreover, bi and ci are the position vectors of
where
points Bi and Ci, respectively. Obviously, Δp is zero when only joint displacements are considered, by virtue of the zero vectors in

the lower parts of $̂
i
A, $̂

i
B and $̂

i
C. This means that the joint variations due to rigid-bodymotions of the links have no influence on the

position of the rotation center.
Eq. (6) relates the end-effector deflection to the articulated joint displacements and elastic deformations in the ith leg, which

can be rewritten by separating all the variation terms into those of the passive joints and the ones due to elastic deflections and
actuator compliance,
$iO ¼ JiθΔθi þ JiqΔqi ð10Þ

J iθ ¼ $̂
i
A $̂

i
u1 … $̂

i
u12

h i
∈R6�13

; Δθi ¼ Δθi Δui
1 …Δui

12

h iT ð11aÞ

J iq ¼ $̂
i
B $̂

i
C

h i
∈R6�2

; Δqi ¼ Δψ i Δξ i½ �T ð11bÞ
Let the external wrench (six-dimensional array of force and moment) applied to the end of the ith leg be fi = [mex,i
T fex,iT ]T. On the

other hand, in accordance to Fig. 3(b), the force/torque causing the deflectionΔθi in the ith leg being denoted by τi = [τθi (τi1m)T (τi1f )T

(τi2m)T (τi2f )T]T, the equilibrium condition for the system is written as
Jiθ
T
f i ¼ τi; τi ¼ Ki

θΔθi ð12aÞ

Jiq
T
fi ¼ 0 ð12bÞ

Kθ
i is the stiffness matrix in joint space. Combining Eqs. (10), (12a) and (12b), the kinetostatic model of the ith leg is
where

reduced to
Siθ Jiq
Jiq

T
02�2

" #
fi
Δqi

� �
¼ $iO

02�1

� �
ð13Þ

the 6 × 6 block Sθi = Jθi (Kθ
i )−1Jθi T represents the spring compliance relative to the reference frame on the moving platform,
where

and the block Jqi takes into account the passive-joint influence on the MP motions.
Moreover, Kθ

i is a 13 × 13 matrix, describing the stiffness of the virtual springs and the actuators, which takes the form:
Ki
θ ¼

Ki
act 01�6 01�6

06�1 Ki
L1

06�6

06�1 06�6 Ki
L2

2
664

3
775 ð14Þ

Kact
i describes the ith actuator stiffness, whileKi

L1 and Ki
L2 , respectively, are the 6 × 6 stiffness matrices of the proximal and
where

distal curved links in the ith leg. The compliance matrix Ki
L1 2ð Þ

� �—1 ¼ Ci
1 2ð Þ, i = 1, 2, 3, of the proximal (distal) curved link can be

found using Castigliano's theorem, as presented in Section 3.2.
The matrix Jθi ∈ ℝ6 × 13 is the Jacobian matrix associated with the virtual springs and Jqi ∈ ℝ6 × 2 the one associated with the

passive joints. The Cartesian stiffness matrix Ki of the ith leg is extracted from the inverse of the matrix in Eq. (13)
K
0

i ¼
S i
θ J iq

J iq
T

02�2

" #—1

ð15Þ
As a result, the Cartesian stiffness matrix Ki mapping displacement screw to wrench is obtained as the first 6 × 6 block in Ki
′.

From f = ∑ i=1
3 fi, $Oi = $O and fi = Ki$Oi , the Cartesian stiffness matrix K of the system is found by simple addition in accordance

to f = K$O, namely,
K ¼ ∑3
i¼1 Ki ð16Þ
The stiffness matrix K consists of rotational, translational and coupling blocks. Liu's stiffness matrix [8], K = JKactJT, and
Enferadi's [9] only considered the rotational block. Compared to Liu's and Enferadi's models developed through force analysis,
matrix Eq. (16) can be readily used for SPM parameterization and design optimization.



Fig. 4. A curved beam element acted upon by an external wrench.
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The SPM deformation screw is found as:
with t
$O ¼ ΔφT ΔpT
h iT ¼ K—1 f ð17Þ
Compared to the conventional error formulation of Eq. (5), the derived error model Eq. (17) includes not only the
orientational deflection but also the positional deflection as expressed by Eq. (6). The translational displacement Δp in $O will not
necessarily vanish when an external wrench is applied to the end-effector. This means that the centers of the two plates have
separated. To make it clear, we denote the separation of the two centers as the MP center shift.

3.2. Compliance matrix formulation of curved beam

To derive the stiffness of the SPM limb, the compliance of a circular curved beam is to be formulated. A cantilever with forces
and moments applied onto the free end is shown in Fig. 4, the corresponding compliance matrix C being calculated by means of
Euler–Bernoulli beam theory. To this end, the strain energy is expressed as
U ¼ R
2

Z α

0

"
ð f ′1Þ2
EA

þ ð f ′2Þ2
GA

þ ð f ′3Þ2
GA

þ ðm′
4Þ2

GIx
þ ðm′

5Þ
2

EIy
þ ðm′

6Þ
2

EIz

#
dϕ ð18Þ

he forces and moments defined as

f ′1 ¼ f 1 cosϕ− f 2 sinϕ
f ′2 ¼ f 1sinϕþ f 2 cosϕ
f ′3 ¼ f 3
m′

4 ¼ m4 cosϕ−m5 sinϕ− f 3R 1−cosϕð Þ
m′

5 ¼ m4 sinϕþm5 cosϕþ f 3Rsinϕ
m′

6 ¼ m6− f 1R 1−cosϕð Þ− f 2Rsinϕ:
Using Castigliano's theorem [12], the deflections are obtained by differentiation of Eq. (18):
Δu1 ¼ ∂U
∂m4

; Δu2 ¼ ∂U
∂m5

; Δu3 ¼ ∂U
∂m6

; Δu4 ¼ ∂U
∂ f 1

; Δu5 ¼ ∂U
∂ f 2

; Δu6 ¼ ∂U
∂ f 3

: ð19Þ
Subsequently, the relationship between the deflections and wrench is established as
Δu1
Δu2
Δu3
Δu4
Δu5
Δu6

2
6666664

3
7777775
¼

C11 C12 0 0 0 C16
C12 C22 0 0 0 C26
0 0 C33 C34 C35 0
0 0 C34 C44 C45 0
0 0 C35 C45 C55 0
C16 C26 0 0 0 C66

2
6666664

3
7777775

m4
m5
m6
f 1
f 2
f 3

2
6666664

3
7777775

or Δu ¼ Cf ð20Þ
The entries of the compliance matrix C are given in Appendix A.



Fig. 5. Orientation representation of the azimuth–tilt–torsion angles.
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4. Case studies

Henceforth, the MP orientation is represented by azimuth–tilt–torsion (ϕ–θ–σ) angles [13], as shown in Fig. 5, the analysis
being carried out under one given working mode [14], characterized by (ui × vi) ⋅ wi ≤ 0, i = 1, 2, 3. Moreover, the actuator
stiffness is set to Kact

i = 106 Nm/rad for examples I and II.
4.1. Example I: unlimited-roll SPM

The first example pertains to an unlimited-roll SPM [15,16] shown in Fig. 6(a), that consists only of three curved links
connected to the MP. The three links are driven by actuators moving independently on a circular guide. The dimensions and link
parameters of the SPM, which admits a relatively large dexterous workspace [16], are listed in Table 1, where r is the radius of the
circular cross section of the curved link and R is the radius of the midcurve.
a b
1

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0y

x

Type I singularities
Type II singularities
Regular Workspace

Fig. 6. A spherical parallel manipulator with unlimited roll: (a) schematic diagram; (b) its regular workspace with σ = 0.



Table 1
Dimensions and parameters of the special SPM.

SPM Link

a1 a2 β R [m] r [m] E [GPa] v

60° 90° 90° 0.200 0.0075 210 0.3
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Fig. 6(b) shows the workspace on a unit sphere projected in the xy plane for the SPM with σ = 0. Similarly, the
workspace can be obtained for different values of σ. The link is made of steel of Young's modulus E, Poisson's ratio ν and shear
modulus G = E/(2 + 2ν). From Eq. (20), the compliance matrix of the distal curved link is calculated as
C2 =

6.923 —0.575 0 0 0 0.388

—0.575 6.923 0 0 0 0.632

0 0 6.020 —0.438 —0.767 0

0 0 —0.438 0.055 0.077 0

0 0 —0.767 0.077 0.121 0

0.388 0.632 0 0 0 0.192

· 10—4 ð21Þ

e blocks corresponding to rotation, translation and coupling are given in rad/Nm, m/N and rad/N, respectively.
Th
For configurations with tilt angle θ = 0, the stiffness matrix is constantly equal to
K =
K rr K rt

K T
rt K tt

=

0.055 0 0 —0.373 0.430 0

0 0.055 0 —0.430 —0.373 0

0 0 0.332 0 0 0.745

—0.373 —0.430 0 6.233 0 0

0.430 —0.373 0 0 6.233 0

0 0 0.745 0 0 1.849

·106 ð22Þ

e entries Krr, Krt and Ktt are given in Nm/rad, N/rad and N/m, respectively. For any applied external wrench, the deformation
Th
of the SPM can be determined. An example is given for a vector of pure moments m = [10, 10, 10]T Nm, which induce the
deformation screw
$O ¼ 2:985 2:985 0:314; 0:385 —0:028 —0:127½ �T

the angular deflection is given hereafter within the deformation screw in μrad, which leads to ‖Δφ‖ = 4.232 μrad = 0.243o
where
and ‖Δp‖ = 0.406 mm.

The stiffness matrix Eq. (22) is obtained for curved links of uniform cross-section, as shown in Fig. 6(a). In a real design, the
curved link can have embodiment of cylindrical ends, as shown in Fig. 1. For this type of links, the diagonal entries of the stiffness
can slightly increase, leading to a smaller deflection.

4.1.1. SPM compliance at singular configurations
The stiffness matrix at certain configurations may become singular. Taking [90°, 60°, 0], for example, the SPM encounters a

parallel singularity, where det(A) = 0, as depicted in Fig. 6(b), and the stiffness matrix is
K =

0.067 0.101 —0.007 —0.523 —0.333 0.084

0.101 0.192 0.082 —0.832 —0.608 0.637

—0.007 0.082 0.205 —0.061 —0.210 1.130

—0.523 —0.832 —0.061 4.602 2.287 —1.320

—0.333 —0.608 —0.210 2.287 3.475 —1.269

0.084 0.637 1.130 —1.320 —1.269 6.876

·106 ð23Þ

matrix Eq. (23), rank(Krr) = 2, the stiffness matrix thus being singular. The problem of calculating the displacements can be
In
solved by means of least squares based on the QR decomposition [17], namely,
K
aT
� �

$O ¼ f
0

� �
ð24Þ

a is the last column of matrix R from K, which spans the null space of K. The solution sought that lies outside the null space
where
of K. With the moment m applied on the MP, the twist deflections are calculated as:
$O ¼ 11:502 —4:747 4:782; 0:285 0:234 —0:390½ �T ð25Þ
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As K is singular, the deformation screws will not be definite. By means of the least square method after spanning the null
space, the deformation screws are approximated via linear regression. From kinematics, the MP generates a finite rotation about
its center of rotation O at this type of singularity. Another example is the case of a serial singularity, for instance, [45°, 60°, 0],
where the stiffness matrix is invertible at this type of singularity. The displacements are found as:
a

Fig. 7. S
$O ¼ 15:307 —3:246 —2:443; 0:449 —0:315 0:332½ �T ð26Þ
4.1.2. Comparison with FEA results
With the parameters in Table 1, the FE model displayed in Fig. 7 was created in Ansys/Workbench to verify the foregoing

model; rib stiffeners were used to make the mobile platform rigid and two passive revolute joints in each limb were used to
connect the components; while a revolute joint with torsional stiffness of 106 Nm/rad is used to describe the actuation stiffness.
The material of the model is structural steel with the same Young's and shear modulus as shown in Table 1.

To validate themodel effectively, 125orientations ofϕ∈S,ϕ∈S, and θ ∈ {0, 15o, 30o, 45o, 50o}, whereS ¼ 0;45o;90o;120o;180o
	 


,
under the external moments m = [10, 10, 10]T Nm, were analyzed. The corresponding translational and rotational displacements,
∥Δp∥ and ∥Δφ∥, are shown in Fig. 8. At configurations with tilt angle θ = 0, the FE solved deflections are ∥Δp∥ =0.401 ± 0.0004 mm
and ∥Δφ∥ = 0.237 ± 0.022°, which are quite close to the analytical solutions. Henceforth, the relative error (%) between the
developed model and FE analysis results is defined as
Err ¼ jδAna−δFeaj=δFea � 100% ð27Þ

δ stands for the δp or δϕ. The average relative error for ∥Δp∥ is 1.48% and the average difference is 0.014 mm. For ∥Δφ∥, the
where
average difference is 0.035° or 4.17% of relative error. In contrast, the difference of the results obtained from the FEA approach and
the developed model for the most workspace points is below 5%. An exception is the SPM at singular configuration. For instance,
at the singular configuration of [45°, 60°, 0] under m = [10, 10, 10]T Nm, the FE solved deflections are ∥Δp∥ = 0.635 mm and
∥Δφ∥ = 1.041o. Compared to the analytical solution Eq. (26), the difference for the orientation error rises up to about 13%. The
comparison shows that the developed stiffness model can effectively calculate the manipulator stiffness.

In the FE model, we consider only major geometric dimensions. Details such as round corner or chamfers are not included.
While such details affect the stress, they have less influence on the deflection.

4.1.3. Isocontours of MP center shift and orientation error
Fig. 9(a) and (b) illustrate the isocontours of the MP center shift and orientation error throughout the regular workspace. The

maps are formulated with the maximummagnitude at each discrete point among the eight combinations of momentm = [±10,
±10, ±10]T Nm. It is apparent that the largest displacements occur at the workspace boundary and the three peaks of the
contours appear symmetrically distributed at intervals of 120°. The maximum orientation error and center shift are 3.5° and
2 mm, respectively, for the link properties given, the MP oriented at ϕ = −70°. Within the region θ ≤ 30°, the orientation
accuracy due to the elastic deformation can reach 1°, whereas the center shift can reach up to 1.5 mm, which cannot be ignored
when high positional accuracy is needed. Given the SPM symmetry, the other cases of σ-orientations generate the same
isocontour maps with rotational symmetry to Fig. 9(a) and (b), respectively. It can be predicted that the global stiffness becomes
weaker from the center region of the workspace to the boundary and its 3D contour map resembling a conical surface.

Fig. 9(c) displays the orientation error when only the actuation compliance is considered. By comparison to Fig. 9(b), it is seen
that the limb flexibility strongly influences the orientation error. The link properties should thus be an important consideration in
the SPM design.
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4.2. Example II: an alternative structure of a co-axial SPM

In this example, an alternative structure of the SPM in Example I, shown in Fig. 10, is studied. At the orientation [0, 0, 0], the
Cartesian stiffness matrix is computed as:
K =

0.021 0 0 —0.092 0.183 0

0 0.021 0 —0.183 —0.092 0

0 0 0.127 0 0 0.247

—0.092 —0.183 0 3.253 0 0

0.183 —0.092 0 0 3.253 0

0 0 0.247 0 0 1.808

·105 ð28Þ

mpared to matrix Eq. (22), the diagonal elements are much smaller, which imply that this SPM will generate large twist
Co
deformation under moment m:
$O ¼ 12:043 12:043 1:0647; 1:019 —0:336 —0:146½ �T
The isocontours for the orientation error and center shift are displayed in Fig. 11. It is seen that both the MP center shift and
orientation error are larger than the SPM in Example I, which indicates that the presence of the circular guide of SPM in Fig. 6(a)
effectively reduces the positioning errors.

4.3. Example III: Agile Wrist

This example borrows the geometric parameters of the AgileWrist [18], i.e., α1 = α2 = 90o,β ¼ γ ¼ sin−1ð
ffiffiffi
6

p
=3Þ, as shown in

Fig. 12, whose architecture determines a large workspace with σ = 30o, but keeps the same properties of the circular curved
beam. The actuation stiffness is Kact = 5.44 ⋅ 105 Nm/rad. The isocontours for the center shift and orientation error are mapped
within a dexterous workspace, as seen in Fig. 13. When σ = 0, the maximum orientation error can reach up to 12° at the
workspace bounds while the center shift is 4.5 mm. With torsion angle σ increasing, the MP center shift and orientation error
become smaller.

5. Conclusions

This paper investigates the MP center shift in spherical parallel manipulators with the consideration of limb flexibility. On the
basis of screw theory, the virtual-spring method, supported with Castigliano's theorem is adopted for the stiffness modeling of
SPMs. The model developed is validated by means of FEA. The elastic deformation for the SPMs at singular configurations is given
due attention, which is handled by means of least square method, based on the QR decomposition.
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A major contribution of the paper is the development of a method for qualifying the MP center shift of SPMs. The method
addresses a common problem with SPMs of revolute joints. The proposed approach is illustrated with case studies of SPMs with
different structures, whose isocontours for the MP center shift and orientation errors within a prescribed workspace were
mapped. Moreover, the isocontours can be used for stiffness maps of SPMs. Through comparison, it is found that the SPMwith the



Fig. 10. An alternative structure of the unlimited-roll SPM.
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circular guide yields a smaller center shift and error. The study shows that the deflection due to the limb flexibility causes large errors,
in particular, the MP center shift, which could be considered in the design of SPMs, with the method developed in this work.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.mechmachtheory.2014.01.001.
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Fig. 12. Prototype of the Agile Wrist, McGill University, Canada.
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Appendix A

The elements of the compliance matrix of the curved beam in Eq. (20) are given as:
where
C11 ¼ R
2

s1
GIx

þ s2
EIy

 !
ðA� 1aÞ

C12 ¼ s8R
2

1
GIx

− 1
EIy

 !
ðA� 1bÞ

C16 ¼ R2

2
s2
EIy

− s7
GIx

 !
ðA� 1cÞ

C22 ¼ R
2

s2
GIx

þ s1
EIy

 !
ðA� 1dÞ

C26 ¼ R2

2
s4
GIx

− s2
EIy

 !
ðA� 1eÞ

C33 ¼ Rα
EIz

ðA� 1fÞ

C34 ¼ s5R
2

EIz
ðA� 1gÞ

C35 ¼ s6R
2

EIz
ðA� 1hÞ

C44 ¼ R
2A

s1
E
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G

� �
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3

2EIz
ðA� 1iÞ

C45 ¼ s8R
2A
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E
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2A

s1
G
þ s2

E

� �
þ s2R

3

2EIz
ðA� 1kÞ

C66 ¼ Rα
GA

þ R3

2
s3
GIx

þ s2
EIy

 !
ðA� 1lÞ

A is the area of the beam cross section, Ix, Iy and Iz are the moments of inertia. Moreover,

s1 ¼ α þ sin α cosα ðA� 2aÞ

s2 ¼ α−sin α cosα ðA� 2bÞ

s3 ¼ 3α þ sinα cos α=2−4 sinα ðA� 2cÞ

s4 ¼ 1−cosα−sin2α=2 ðA� 2dÞ

s5 ¼ sin α−α ðA� 2eÞ

s6 ¼ cosα−1 ðA� 2fÞ

s7 ¼ 2sin α−α−sin α cosα ðA� 2gÞ

s8 ¼ −sin2α: ðA� 2hÞ
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