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The optimum design of spherical parallel manipulators (SPM) is studied for a prescribed
workspace. A numerical method is developed to find optimal design parameters including
link dimensions and architecture parameters for a maximum dexterity. In the method, the
objective function is formulated in such a way that the optimal problem is converted to a
nonlinear least squares problem, which can be readily solved. Moreover, the problem of
design space is addressed. A system of inequalities in terms of link dimensions is derived
to describe the design space for feasible SPMs. Examples are included to illustrate the
application of the method.
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1. Introduction

A spherical parallel manipulator (SPM) is in general made up of two pyramid-shape platforms, namely, the base platform
and the mobile platform that are connected by three equally spaced legs, each consisting of revolute joints only. The axes of
all joints intersect at a common point, which is called the center of rotation. The motion of the mobile platform is confined on
the surface of a sphere centered at the rotation center, thereby a spherical parallel manipulator provides three degrees of
freedom of pure rotations. Most applications of SPMs can be found in orienting devices as Fig. 1a, such as camera orienting
and medical instrument alignment [1–3]. They can also be used to develop spherically actuated manipulators, as demon-
strated in Fig. 1b. While most SPMs studied are of three dofs, SPMs with two dofs were also reported [4].

In designing spherical parallel manipulators, a common concern is the workspace [5–8]. In general, the workspace of an
SPM is rather small due to the characteristic of its closed kinematic chain, a design with large workspace is desirable. It is
already shown in [9] that an SPM has the maximum workspace if the two links of each leg have identical dimensions of
90�. On the other hand, a high kinematic performance within the workspace is required. A commonly used index to quantify
the kinematic performance is dexterity [5]. While the workspace volume and dexterity cannot reach maximum simulta-
neously [10], optimum design can be carried out with preference on one of them. In this work, the optimum design is con-
fined to find optimal design parameters in terms of dexterity over a prescribed workspace.

Some optimum kinematic designs for SPMs have been reported in the literature. Asada and Granito followed a graphic
approach in which they examined graphically the condition number with different sets of geometrical parameters [11].
Gosselin and Angeles made use of the bisection searching method for minimizing the conditioning index [9]. A genetic algo-
rithm was adopted by Li and Payandeh in finding the optimal design of a medical SPM [2]. Liu et al. investigated the SPM
optimization considering both dexterity and stiffness [7]. Other relevant works of optimum design can be found in [12,13].
. All rights reserved.
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(a) (b)

Fig. 1. Applications of SPMs: (a) an orienting device and (b) a spherically actuated manipulator.
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In the optimum design, three issues have to be considered. The first one is the criteria of optimization. In the kinematic
design, a commonly used criterion is the dexterity, which, in this work, refers to the capacity of an SPM to provide a large
range of orientation to its end-effector. Dexterity describes generally an SPM’s motion accuracy, controllability (singularity),
and manipulability. There are different definitions to characterize the dexterity [11,14,15]. The earliest definition of dexterity
is introduced by Salisbury and Craig [14], in which the dexterity is evaluated by the condition number of the Jacobian matrix.
Other definitions include the Generalized Velocity Ratios, in short GVR, by Asada and Granito [11], and the Global Condition-
ing Index, GCI, by Gosselin and Angeles [15]. The GCI takes the average value of the reciprocal of the condition number over
the workspace volume. More dexterity definitions can be found in [16,17]. In addition to the dexterity, other criteria includ-
ing stiffness and forces at the actuators are also considered in some studies. In this work, the author adopts the GCI conven-
tion, with the aim to evaluate dexterity over a given workspace.

The second issue is concerned with the selection of a proper optimization method, which can be either numerical and
graphic one [11,12]. A graphic method displays directly the variations of performance indices, from which optimum solu-
tions can be obtained. The shortage is that only a very limited number of parametric selections can be investigated, which
may lead to sub-optimal results, as revealed in the examples of this paper. Moreover, graphic methods are less effective if the
design space contains more than three variables. On the other hand, a numerical method is capable to handle with large de-
sign space in the SPM optimization. The problem with numerical methods is that they are normally very time-consuming,
partly due to the calculation of the performance index and partly to the definition of objective function, which are problems
addressed in the paper.

The last issue is on the determination of design space. Design space describes the bounds for all design variables. The de-
sign space enables designers to gain an insight into the problem with feasible solutions. To some extent, the importance of
the design space is often overlooked in optimum designs, only a few studies being concerned with the design space [7,18,19].
As a matter of fact, a well defined design space can contribute to the finding of an optimal solution by confining the search or
calculation with values that lead to a feasible mechanism. The constraints on the possible values of design parameters are
especially important to numerical methods, for which the output depends highly on the initial points within the design
space. For this reason, the design space can provide a guidance to the selection of initial values in numerical optimizations.

In this work, the optimum design of spherical parallel manipulators with a prescribed workspace is studied with an aim
to determine the design space and, furthermore, to find optimal design parameters in terms of dexterity. A system of
inequalities is derived to describe the design space of possible design parameters such as link dimensions and other geomet-
rical parameters. A numerical optimization is finally formulated for SPMs as a nonlinear least squares problem. The study is
conducted with respect to a spherical parallel manipulator with coaxial input shafts.

The paper is organized as follows: First, a conceptual design of an SPM with coaxial input shafts is presented in Section 2. The
forward and inverse kinematics of SPMs are reviewed in Section 3. The design space problem is solved in Section 4. An optimum
design method is developed in Section 5. Design examples are included in Section 6. The work is concluded in Section 7.

2. An SPM with coaxial input shafts

The spherical parallel manipulator in the work is a novel robotic wrist capable of unlimited rolling motion. As shown in
Fig. 2a, the SPM consists of three curved links connected to a mobile platform as an end-effector. The three links are driven by
three actuators moving independently on a circular guide. The manipulator has three kinematic chains made up of two rev-
olute and one spherical joints,1 it hence being classified as a 3-RRS wrist. Degrees of freedom of the SPM are determined
through Grubler formula as
1 The
m ¼ 6ðnl � 1Þ � 5nr � 3ns ¼ 6� ð8� 1Þ � 5� 6� 3� 3 ¼ 3 ð1Þ
where nl is the number of total links and nr and ns are numbers of revolute and spherical joints, respectively.
sliders that move one the circular guide are also called circular prismatic joints, as addressed in [20].



Fig. 2. An SPM capable of unlimited rolling: (a) conceptual design with (1) end-effector, (2) circular guide, (3) actuating unit and (4) curved link; and (b) its
equivalent SPM model.
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The described design is kinematically equivalent to an SPM with coaxial input shafts as shown in Fig. 2b, which was
first reported in [11]. Such a coaxial architecture enables the SPM have an unlimited rolling, in addition to limited pitch
and yaw rotations. Compared with Fig. 2b, the embodiment of Fig. 2a improves the design in several aspects. First, the
use of circular guide eliminates the three curved links connected to input shafts and keeps only the three links support-
ing the mobile platform. As a matter of fact, circular tracks that support sliders can be found in some robotic applica-
tions [21,22]. By introducing the circular guide, the SPM can be designed using a modular approach, now that all three
legs are identical. Moreover, the stiffness of each leg is improved due to the presence of the circular guide. Furthermore,
the upper curved links and the mobile platform are connected by spherical joints, rather than revolute ones, which pre-
vent the occurrence of overconstraint of physical revolute joints. This can be seen from Eq. (1), where no repeated con-
straint is found. From a mechanism viewpoint, the SPM introduced has the same kinematic features as a ball joint and is
referred as an active ball joint.

3. Kinematics of SPM

A general spherical parallel manipulator is shown in Fig. 3a. The SPM consists only of revolute joints, whose axes are de-
noted by unit vectors ui; vi, and wi. The three links that are connected to the base platform have identical dimensions of a1,
while the three links that connect to the mobile platform have identical dimensions of a2. Moreover, b and c define the
geometry of two regular pyramids of the base and mobile platforms. The active ball joint is a special case of SPMs for which
c ¼ 0.
Fig. 3. Kinematic model of a spherical parallel manipulator: (a) symbol convention and (b) prescribed workspace.
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A coordinate system is selected for the SPM, with the origin located at the rotation center. The z axis is normal to the bot-
tom surface of the base pyramid and points upwards, while the y axis is located in the plane made by the z axis and u1.

Refer to Fig. 3b, the orientation of SPM is described by an array of angles w ¼ ½w1;w2;w3�
T , for which the rotation matrix is

defined by two sequential rotations
Q ¼ rotðe2;w2Þrotðe3;w3Þ ð2Þ
where e2 ¼ ½� sin w1; cos w1;0�
T
; e3 ¼ ½0;0;1�T and rotðei;wiÞ is a rotation matrix following the angle-axis representation [23].

Under the selected coordinate system, unit vector ui is derived as:
ui ¼ ½� sin gi sin c; cos gi sin c;� cos c�T ð3Þ
where gi ¼ 2ði� 1Þp=3.
Unit vector wi; i ¼ 1;2;3 of the axis of the intermediate revolute joint of the ith leg is obtained in terms of the input joint

angle hi; i ¼ 1;2;3 as:
wi ¼ Rizy ð4Þ
where zy ¼ ½0;1;0�T and Ri ¼ rotðui; hiÞ. Expanding the right side of Eq. (4) yields
wi ¼
�sgiscca1 þ ðcgishi � sgiccchiÞsa1

cgiscca1 þ ðsgishi þ cgiccchiÞsa1

�ccca1 þ scchisa1

2
64

3
75 ð5Þ
where s stands for sine, and c for cosine.
Unit vector vi, parallel to the axis of the top revolute joint of the ith leg, is a function of the orientation of the mobile plat-

form. Let this orientation be described by the rotation matrix Q , then
vi ¼ Qv�i ð6Þ
where v�i is the unit vector for the axis of the top revolute joint of the ith leg when the mobile platform is in its reference
orientation, which is given as
v�i ¼ ½� singi sin b; cos gi sin b; cos b�T ð7Þ
For the closed chain of the spherical parallel manipulator, the following equation holds:
wi � vi ¼ cos a2; i ¼ 1;2;3 ð8Þ
The Jacobian matrix of SPMs can be obtained through differentiating Eq. (8), which gives
_wi � vi þwi � _vi ¼ 0 ð9aÞ
Note that
_vi ¼ x� vi ð9bÞ
_wi ¼ _hiui �wi ð9cÞ
where x is the angular velocity of the end-effector. Eq. (9a) is finally written in a form of
Jx ¼ _h ð9dÞ
where _h ¼ ½ _h1; _h2; _h3�T , and J ¼ ½j1; j2; j3�
T with ji ¼ wi�vi

ðui�wiÞ�vi
.

4. Determination of design space

Substituting Eqs. (5) and (6) into Eq. (8) and further substituting the tan-half identifies, namely,
cos hi ¼
1� t2

i

1þ t2
i

; sin hi ¼
2ti

1þ t2
i

; ti ¼ tanðhi=2Þ ð10Þ
into the new equation produces
Ait2
i þ 2Biti þ Ci ¼ 0; i ¼ 1;2;3 ð11Þ
where Ai; Bi and Ci are functions of the kinematic parameters and of the orientation of the mobile platform. The presence of
real solutions of ti implies that the discriminant of Eq. (11) has to be non-negative, i.e.
B2
i � AiCi P 0; i ¼ 1;2;3 ð12Þ
from which the design space is to be determined. For simplicity, we first deal with leg 1 only, for which gi ¼ g1 ¼ 0.
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Let vi ¼ ½xi; yi; zi�T . The coefficient functions A; B and C of Eq. (11) become
Ai ¼ yiðscca1 � ccsa1Þ � ziðccca1 þ scsa1Þ � ca2 ð13aÞ
Bi ¼ xisa1 ð13bÞ
Ci ¼ yiðscca1 þ ccsa1Þ � ziðccca1 � scsa1Þ � ca2 ð13cÞ
where i ¼ 1. By substituting Eqs. (13a)–(13c) into Eq. (12) and simplifying, we have
½x2
i þ ðyiccþ ziscÞ2�s2a1 � ðyisc� ziccÞca1 � ca2½ �2 P 0; i ¼ 1 ð14aÞ
A tedious manipulation on the above equation, making use of x2
i þ y2

i þ z2
i ¼ 1 and trigonometric identities, finally yields
�ðyisc� zicc� ca1ca2Þ2 þ s2a1s2a2 P 0 ð14bÞ
which is further written as
ðyisc� zicc� d1Þðyisc� zicc� d2Þ 6 0; i ¼ 1 ð14cÞ
or
Y2

j¼1

ðyisc� zicc� djÞ 6 0; i ¼ 1 ð14dÞ
where dj � cosða1 þ ð�1Þja2Þ; j ¼ 1;2.
Inequality (14d) for leg 1 can be generalized for the other two legs by coordinate transformation, which yields
Y2

j¼1

ð�xisgiscþ yicgisc� zicc� djÞ 6 0; i ¼ 1;2;3 ð15Þ
that is
Y2

j¼1

ðnT
i vi þ djÞ 6 0; i ¼ 1;2;3 ð16Þ
where ni ¼ ½sgisc;�cgisc; cc�
T .

Let fi ¼ nT
i vi which is bounded by maxðfiÞ and minðfiÞ. For any given b and c, fi becomes a function of xi; yi and zi, which are

functions of SPM orientation. Now that x2
i þ y2

i þ z2
i ¼ 1, the determination of the maximum and minimum of fi is actually a

constrained optimization problem, which can be solved numerically.
With maxðfiÞ and minðfiÞ, the inequality of (16) leads to two systems of inequalities, which are
� cosða1 þ a2Þ 6 minðfiÞ ð17aÞ
� cosða1 � a2ÞP maxðfiÞ ð17bÞ
and
� cosða1 � a2Þ 6 minðfiÞ ð17cÞ
� cosða1 þ a2ÞP maxðfiÞ ð17dÞ
By graphically checking on the systems, it can be found that the inequalities of (17a) and (17b) yield four unbounded regions
for solutions, where unlikely the feasible link dimensions are found. The feasible solutions can only be found by the inequal-
ities of (17c) and (17d), which can be rewritten as
� cosða1 � a2Þ 6 fmin ð18aÞ
� cosða1 þ a2ÞP fmax ð18bÞ
where fmin ¼minffig3
1 and fmax ¼maxffig3

1. By assuming a1 2 ð0;180�� and a2 2 ð0;180��, the inequalities (18a) and (18b) lead to
ja1 � a2j 6 cos�1ð�fminÞ ð19aÞ
ja1 þ a2 � 180�j 6 cos�1ðfmaxÞ ð19bÞ
The left sides of the inequalities (19a) and (19b) are of link dimensions, while the right sides are functions of geometrical
parameters c and b. When plotted in the a1 � a2 plane, the system of inequalities yields a rectangular region. Any point
in the rectangle stands for a pair of feasible dimensions for the prescribed workspace. In light of this, the two inequalities
are referred as design space inequalities.
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5. Optimization of design parameters

The design space enables us select the possible design parameters for a prescribed workspace. To find the optimal param-
eters within the design space for a better kinematic performance, a certain means of optimization has to be employed. The
optimization in this work is conducted numerically on a nonlinear square problem formulated by modifying the criteria of
evaluation, as described presently.

5.1. Dexterity evaluation

Prior to optimizations, a criterion has to be selected first for evaluation of the dexterity of SPMs. A commonly used cri-
terion to evaluate this kinematic performance is the GCI. For a workspace distributed over a region X, the GCI is defined as
[15]
GCI ¼
R

X 1=jðJÞdwR
X dw

ð20Þ
with the condition number jðJÞ is defined as
jðJÞ ¼ kJ�1kkJk ð21Þ
where the Euclidean norm k � k of a matrix A is
kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðAT WAÞ

q
ð22Þ
with W ¼ 1
3 I for the purpose of normalization. Here I is the 3� 3 identity matrix. In practice, the GCI of an SPM is calculated

through a discretized approach, i.e.
GCI ¼ 1
W

Xn

i¼1

1
ji

Dwi ð23Þ
where n is the total number of discretizing points and W is the volume of workspace.
In order to get an accurate value of GCI, one has to visit as many points (orientations) within a workspace as possible. In

addition, a system of highly nonlinear equations has to be solved for each point to find joint variables. For these reasons, the
calculation of GCI is computational intensive and time-consuming. Hence it is not practical, at least not efficient, to find opti-
mal GCI by any exhausted searching approach. The author hence resorts to the numerical optimization technique for an opti-
mal solution, with a wish to avoid searching the design space exhaustedly. In doing so, the evaluation criterion, GCI, is
modified so that the new criterion is suitable for numerical optimization, as outlined presently.

Referring to Eq. (23), the volume of the orientational workspace can be partitioned equivolumetrically, i.e., Dwi � Dw, as
reported in [24]. With such a measure, Eq. (23) becomes
GCI ¼ 1
n

Xn

i¼1

1
ji

ð24Þ
The conditioning index obtained through Eq. (24) is an arithmetic mean, which can be replaced with a quadratic mean for a
better indication of the dexterity. Moreover, a quadratic function can lead to a least squares problem, which is readily solved.
A new conditioning index is therefore defined as
Ca ¼
1
n

Xn

i¼1

1
j2

i

ð25Þ
Now that ji P 1; Ca is a positive number with an upper bound of 1, the same as the GCI. In view of this, Ca can be regarded as
an approximate of GCI.

The condition number j of Eq. (25), by definition, is a function of geometrical parameters as well as configuration vari-
ables. The condition number can be expressed as
j ¼ jða1;a2;b; c; h1; h2; h3;w1;w2;w3Þ ¼ jðx; h; wÞ ð26Þ
where the set of geometrical parameters x ¼ ½a1;a2; b; c�T , the configuration variables h ¼ ½h1; h2; h3�T and w ¼ ½w1;w2;w3�
T . In

the closed-loop kinematic chain of SPM, h is considered as a function of w, which is implicitly defined by Eq. (8). For any ori-
entation wi ¼ ½w1;w2;w3�

T
i , the condition number ji can be expressed as
ji ¼ jiðxÞ ¼ jðx; hðwÞ; wÞjw¼wi
ð27Þ
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5.2. Optimization

Letting q ¼ qðxÞ ¼ 1
j1
; 1
j2
; . . . ; 1

jn

h iT
, Eq. (25) is rewritten as
Ca ¼
1
n

qT q ð28Þ
which is the objective function for the numerical optimization problem. To be able to find a reasonable optimal solution,
certain constraints have to be included.

Two constraints in connection with closed-loop mechanisms are considered. The first constraint is the multiple solutions
of the inverse kinematics. In the case of SPMs, each leg can be regarded as a part of four-bar spherical linkage, which has two
branches for a given orientation, as indicated in Fig. 4. The SPM thus has totally eight sets of solutions of joint angles. In the
optimization, the joint angle may take any branch, if no constraint is applied. To make sure the manipulator can virtually
move continuously, a constraint on the system has to be added to the system to force the legs belonging to a certain branch.
From the point of view of kinematics, each leg shall keep the same branch as the initial position, unless it passes a singular
point.

A careful observation on the mechanism finds that each leg stays with one branch until vectors ui; wi and vi are coplanar.
If we constrain the sign of ðui �wiÞ � vi, the joint variable will be confined to one branch only.

The second constraint comes from the closure of the kinematic chain. The kinematic chain has to be closed for SPMs at
any orientation of the mobile platform in order to make the mechanism physically feasible. The closed-loop chain condition
can be satisfied through Eq. (8). Based on the above two constraints, the optimum problem is finally formulated as
max
x

1
n

qT q

s:t: wi � vi � cos a2 ¼ 0
ðui �wiÞ � vi 6 0 ð29Þ
which is a nonlinear least squares problem that can be solved by many commercial available optimization codes.
As a matter of fact, the constraints in Eq. (29) also apply to the function fi of Eq. (18b), thereby the maximum and min-

imum of fi can be obtained numerically based on these constraints.

6. Design examples

Three examples are included in this section to demonstrate the application of the proposed optimum design method.
While many commercial optimization codes are available, the optimization package with Maple 10 is selected in this work
to carry out numerical optimization. A built-in solver under the name ‘LSSolve’ is used to solve the nonlinear least squares
problems at hand.

6.1. Example I

The first example deals with an SPM with coaxial input shafts, as the case of the active ball joint, i.e., c ¼ 0. The prescribed
workspace is assumed as a pointing cone of 120� opening with 360� full rotation. The design variables are taken as
Fig. 4. The two branches of a leg of an SPM.
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x ¼ ½a1;a2; b�T . The total number of points used for optimization is n ¼ n1 � n2 � n3, where n1; n2 and n3 are numbers of dis-
cretizing points on w1; w2 and w3, respectively. In the example, totally 4� 12� 3 ¼ 144 points are selected. For each discret-
izing point, the two constraints of Eq. (29) yield six inequalities, in which ui; wi and vi are obtained through Eqs. (3), (5) and
(6), respectively. Note that hi; i ¼ 1;2;3, are not calculated explicitly, but treated as dependent variables of wi satisfying Eq.
(8). All discretizing points thus lead to 144� 6 ¼ 864 inequalities in total, all being the functions of the design variables.
Fig. 5. Design space of an SPM.

Table 1
Optimization of an SPM with coaxial input shafts.

a1 (�) a2 (�) b (�) Ca

60.0 (120.0) 90.0 90.0 0.28

Fig. 6. Distribution of conditioning index with b ¼ 75� .
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The design space is determined first upon the solution of the bounds of fi. For b ¼ 75�, the lower and upper bounds of fi are
found to be fmin ¼ �0:707 and fmax ¼ 0:966. The design space inequalities are hence ja1 � a2j 6 45� and
ja1 þ a2 � 180�j 6 15�. By taking different values of b, other inequalities of the design space can be found accordingly. Shown
in Fig. 5 are sub-design spaces with b = 90�, 75� and 60�. It is observed that the design space with b ¼ 60� degenerates into a
Table 2
Comparison of optimization results with two methods.

a1 (�) a2 (�) b (�) 1=j

Numerical method 48 90 90 0.72
Graphic method 50 105 75 0.67

Fig. 7. The variation of conditioning index over a full rotation.
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line segment, which gives the limit of b. As a matter of fact, fmax ¼ 1:0 for b ¼ 60�, from which the inequality (19b) becomes
an equation a1 þ a2 ¼ 180�. The line-shape design space implies that the value of b has to be at least 60� in order to attain
orientations in the prescribed workspace. The entire design space for the prescribed workspace can be obtained by envelop-
ing all sub-design spaces with different values of b.

The optimization with Eq. (29) is carried out with feasible initial values, which are taken from the design space deter-
mined by the design space inequalities. In this work, the convex of Fig. 5 are used as initial points. With different initial val-
ues, two optima which are different in a1 only, but with an identical value of Ca ¼ 0:28, are found. The optima are listed in
Table 1, where the second set of optimum is included in parenthesis. Note that two dimensions are supplementary. This im-
plies that they stand for the same design but different configurations.

An optimization may end up with local minima or maxima. In the case of SPM optimization, the optimization process
starts with different initial points taken in the design space. Each point yields an optimum; the solution is taken as the
one with the maximum objective values. Note that there may exist more than one optimal solutions, as shown in Fig. 6.
Two optima, which are dotted in the figure, have identical objective values. Both optima are the optimal solutions, which
correspond to two configurations of an SPM.

In most situations, a workspace free of singularity is preferred. To this end, an additional constraint can be included in Eq.
(29). For example, to eliminate the singularity which occurs within the workspace, i.e., the type II singularity [25], one more
constraint can be included as
Table 3
Optimiz

a1 (�)

54.9 (1
½detðAÞ�2 P D ð30Þ
where A ¼ ½a1; a2; a3�T with ai ¼ wi � vi and D is a previously established tolerance. In this example, the author has included
this additional constraint in the optimization, the same optimal result being obtained.

It is noted that the optimum obtained by the proposed method is confined by prescribed workspace. As readers may find,
the optimum Ca in the example is relatively small for the given workspace. In such a case of small Ca, it may suggest that a
review of the design specifications is necessary for a high dexterity.
Fig. 8. CAD model of an SPM capable unlimited rolling.

ation of an SPM with identical base and mobile platforms.

a2 (�) b (�) c (�) Ca

15.4) 115.4 (54.9) 33.3 33.3 0.585
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6.2. Example II

In this example, the proposed optimization method is examined with the spherical wrist reported in [11], which has a
prescribed workspace of a conic opening of 90� and 360� full rotation. Following the same approach as the first example,
the optimal result is obtained as given in Table 2. The optimal result reported in [11], in which a graphic method was em-
ployed, is also included in the same table for information. Based on the two optima, the variations of their conditioning indi-
ces over a full cycle of rotation are plotted in Fig. 7. It is clearly seen the difference in the variations of conditioning indices
with both w2 ¼ 15� and w2 ¼ 30�. For the numerical optimization result, the rms value of 1=j over the discretizing points is
0.72, comparing with 0.67 for the graphically optimized result, which indicates an improvement in the dexterity.

The optimum results with this example are selected for the active ball joint. The CAD model of the active ball joint is
shown in Fig. 8. In the design, sliders move together with motors via pinion and gear-ring transmissions. Two sets of HCR
guides from THK are used to enable sliders’ high-precision circular motion with small clearance.

6.3. Example III

The above two examples deal with spherical parallel manipulators with coaxial input shafts. The method can also be ap-
plied to general spherical parallel manipulators. An extra example is included, which is a spherical parallel manipulator with
identical pyramids for the base and mobile platforms. The prescribed workspace is a 90� conic opening with 30� in torsion.
The design variables are taken as x ¼ ½a1;a2; b; c�T . One more constraint c� b ¼ 0 is added to Eq. (29) for the identical base
and mobile platforms. Table 3 presents the optimization results.

Note that there are two sets of optimal parameters with an identical Ca, similar to the case of the active ball joint. Stand-
ing for two possible configurations of a SPM, the two solutions provide flexibility of dimension selection in mechanical
designs.
7. Discussion and conclusions

The optimum design of spherical parallel manipulators for a prescribed workspace is studied. The design space of a spher-
ical parallel manipulator for the prescribed workspace is found through a system of inequalities. The design space enables a
designer to select feasible design parameters for modeling of a spherical parallel manipulator. Moreover, the design space
helps also to reduce the searching space in optimization of spherical parallel manipulators. Thus it can be expected to find
its applications in classes of optimizations.

A numerical optimization method is introduced to find optimal design parameters in terms of dexterity. An objective
function is formulated by modifying the conditioning index so that the optimization problem is converted to a nonlinear
least squares problem, which is readily solved with commercially available software. Compared with graphical methods,
the numerical method can handle effectively with the design space containing more design variables, the number of which,
in the case of this study, is equal to four. The method can also save the intensive searching efforts that are required for the
searching techniques. Moreover, the optimization method formulated in the form of a least squares problem is numerically
robust and readily solved. Constraints with respect to the closed-loop kinematic chain are derived. The design examples
show that the proposed method is able to find the optimal solution.
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