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• A dynamic model is derived by considering the motion characteristics of spherical parallel manipulators (SPMs).
• A comprehensive multiobjective optimization approach is formulated for SPMs.
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a b s t r a c t

This paper deals with the dynamic modeling and design optimization of a three Degree-of-Freedom
spherical parallel manipulator. Using the method of Lagrange multipliers, the equations of motion of the
manipulator are derived by considering its motion characteristics, namely, all the components rotating
about the center of rotation. Using the derived dynamic model, a multiobjective optimization problem
is formulated to optimize the structural and geometric parameters of the spherical parallel manipulator.
The proposed approach is illustrated with the design optimization of an unlimited-roll spherical parallel
manipulator with a main objective to minimize the mechanismmass in order to enhance both kinematic
and dynamic performances.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The design of three Degree-of-Freedom (3-DOF) spherical par-
allel manipulators (SPMs) can consider many criteria, such as
workspace [1–3], dexterity [4–6], dynamics [7], singularity avoid-
ance [8], stiffness [9,10]. These evaluation criteria can be classi-
fied into two groups: one relates to the kinematic performance
while the other relates to the kinetostatic/dynamic performance
of the manipulator [11]. Most of the SPMs find their applications
as orienting devices, such as camera orienting and medical instru-
ment alignment [12,13], therefore, the kinematic aspects, mainly,
workspace and dexterity, were extensively studied in the liter-
ature. On the other hand, the dynamics received less attention.
Staicu [7] used the principle of virtual work to derive the inverse
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dynamics of the Agile Wrist [10], in which recursive matrix re-
lations for kinematics and dynamics were established. When the
SPMs are used to build active spherical manipulators, for instance,
wrist joint [14], the dynamic characteristics are of importance in
their design and applications.

This work develops a dynamic model with the classical ap-
proach of Lagrange multipliers, which takes all the mobile com-
ponents into consideration to calculate the power consumption
effectively. The equations ofmotion for the SPMs aremodeledwith
the motion characteristics, namely, all the bodies rotating about a
fixed point (center of rotation). The derived dynamic model can be
used either to assess the dynamic performance or in the design op-
timization.

In general, a robot design process has to simultaneously deal
with the kinematic and kinetostatic/dynamic aspects, both of
which include a number of performance measures that essentially
vary throughout theworkspace. This can be effectively achieved by
virtue of multiobjective optimization method. The multiobjective
optimization problems of parallel manipulators (PMs) have
been reported in the literature, where various approaches of
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Fig. 1. Architecture of a general SPM: (a) overview, (b) parameterization of the ith leg.
Fig. 2. (a) 3-DOF unlimited-roll SPM, which is a special case of the general SPM with γ = 0; (b) its application as spherically actuated joint.
multiobjective optimization have been applied to different types of
PMs, while considering kinematic, dynamic and static criteria [11,
15–18]. However, a systematic approach lacks in the optimum
design for this class of SPMs, as the static/dynamic performance
received relatively less attention as mentioned above.

This paper focuses on the dynamic modeling and design opti-
mization of the SPMs. A dynamicmodel of the SPM is derived based
on the Lagrange equations. Based on the dynamics, together with
the kinematics and stiffness of the manipulator, a multiobjective
design optimization method is proposed for SPMs, aiming to for-
mulate a general approach for the SPMs in the early design stage.
The multi-objective design optimization problem is applied to a
3-DOF unlimited-roll SPM, for which the Pareto-optimal solutions
are obtained with a genetic algorithm.

2. Architecture of SPMs

A general spherical parallel manipulator is shown in Fig. 1. The
ith leg consists of three revolute joints, whose axes are parallel
to the unit vectors ui, vi, and wi. All three legs have identical
architectures, defined by angles α1, α2, β and γ , where β and
γ define the geometry of two regular pyramids of the base and
mobile platforms. Both the two platforms are assumed to be rigid.
The origin O of the base coordinate system Fa is located at the
center of rotation. The z axis is normal to the bottom surface of
the base pyramid and points upwards, while the y axis is located
in the plane spanned by the z axis and u1 vector.
The SPM under study is a special case of γ = 0 [3], where the
pyramids of the base platform is degenerated to a line segment, as
shown in Fig. 2(a). The axes of the three active revolute joints are
coincident with the z axis and it consists only of three curved links
connected to its mobile platform. The links are driven by actuators
moving independently on a circular guide via pinion and gear-
ring transmissions, which can replace the serial chains based wrist
mechanisms as displayed Fig. 2(b).

3. Dynamic modeling of SPMs

The orientation of the mobile platform (MP) is described by the
azimuth–tilt–torsion (φ–θ–σ ) angles [19] as displayed in Fig. 3, for
which the rotation matrix is expressed as:

Q = Rz(φ)Ry(θ)Rz(σ − φ) (1)

where φ ∈ (−π, π ], θ ∈ [0, π), σ ∈ (−π, π ].
Under the prescribed coordinate system, unit vector ui is

derived as

ui =

−sinηi sin γ cos ηi sin γ −cosγ

T (2)

where ηi = 2(i − 1)π/3, i = 1, 2, 3.
Unit vector vi of the axis of the intermediate revolute joint in

the ith leg is expressed as:

vi =


−sηisγ cα1 + (cηisθi − sηicγ cθi)sα1
cηisγ cα1 + (sηisθi + cηicγ cθi)sα1

−cγ cα1 + sγ cθisα1


(3)
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Fig. 3. Orientation representation of the azimuth–tilt–torsion angles.

Unit vectorwi of the top revolute joint in the ith leg, is a function
of the orientation of the mobile platform described as

wi =

wix wiy wiz

T
= Qw∗

i (4)

where w∗

i is the unit vector for the axis of the top revolute joint
of the ith leg when the mobile platform (MP) reaches its home
configuration, i.e., theMPorientation in the reference frame,which
is given as

w∗

i =

−sinηi sinβ cos ηi sinβ cosβ

T (5)

3.1. Kinematic Jacobian matrix

The relationship between the angular velocity of the mobile
platform ω = [ωx ωy ωz]

T and the input angle velocity θ̇ =

[θ̇1 θ̇2 θ̇3]
T is expressed as

Aω = Bθ̇ (6)

with

A =

a1 a2 a3

T
; ai = vi × wi (7a)

B = diag

b1 b2 b3


; bi = (ui × vi) · wi (7b)

where matrices A and B are named the forward and inverse Jaco-
bian matrices of the manipulator, respectively. The kinematic Ja-
cobian matrix J of the manipulator [1] is obtained as

J = B−1A =

j1 j2 j3

T
; ji = ai/bi (8)

3.2. Inverse dynamic modeling

The motions of the SPM bodies are shown in Fig. 4. The rela-
tionship between the angle rates ϕ̇ = [φ̇ θ̇ σ̇ ]

T and the angular
velocity ω is found as [20]:
ωx
ωy
ωz


=


−sθcφ −sφ sθcφ
−sθsφ cφ sθsφ
1 − cθ 0 cθ

 φ̇θ̇
σ̇

 or ω = Φϕ̇ (9)

The dynamics of the SPM can be solved by using the Lagrange
equations [21] below

d
dt


∂L
∂ q̇


−
∂L
∂q

+ CT
qλ = Qex (10)
Fig. 4. The movements of the mobile platform and a single leg.

where L ≡ T−V is the Lagrangian of the system, including themo-
bile platform and the three legs, and q = [θ1, θ2, θ3, φ, θ, σ ]

T .
Moreover, Qex = [τT , 0]T ∈ R6 is the vector of external forces and
vector τ = [τ1, τ2, τ3]

T characterizes the actuator torques. Matrix
Cq is the system’s constraint Jacobian, which can be found from the
velocity Eq. (6), namely,

Bθ̇ − Aω =

B −AΦ

 
θ̇
T

ϕ̇T
T

= 0 (11)

therefore, the matrix of constraints is found as Cq = [B − AΦ].
Moreover, λ = [λ1, λ2, λ3]

T is a vector of Lagrange multipliers.

3.2.1. Lagrangian of the mobile platform
The local frame (xp, yp, zp) attached to the MP is established

with the origin located at point P , i.e., the center of mass of theMP.
Henceforth, the Lagrangian of the mobile platform is obtained as

Lp = Tp − Vp =
1
2
ωT Ipω − mpR cosβgTp (12)

where Ip denotes the global inertia tensor of the mobile
platform, which can be found in Appendix A. Moreover, g =

[0, 0, 9.81 m/s2]T .

3.2.2. Lagrangian of a single leg
The velocity ψ̇ of the intermediate joint in ith leg is found using

the following equation

ω = θ̇iui + ψ̇ivi + ξ̇iwi (13)

To eliminate θ̇i and ξ̇i, dot-multiplying Eq. (13) on both sides with
ui × wi yields

(ui × wi) · ω = ψ̇(ui × wi) · vi or ψ̇ = jTψ iω

=
(ui × wi)

T

(ui × wi) · vi
ω (14)

The angular velocity of the distal link in the ith leg in the reference
frame (x, y, z) is found as ϖ i = θ̇iui + ψ̇ivi. Let ϖ li denote the
corresponding angular velocity in the local frame (xi, yi, zi), we
have

ϖ i =

eix eiy eiz


ϖ li or ϖ i = Eiϖ li (15)

with

eix =
vi + wi

∥vi + wi∥
, eiy =

vi − wi

∥vi − wi∥
, eiz =

vi × wi

∥vi × wi∥
(16)

From Eq. (15), we have ϖ li = ET
i ϖ i. The Lagrangian of the ith leg

is derived as below

Li = Ti − Vi =
1
2
Il1θ̇2i +

1
2
ϖT

i Il2ϖ i − ml1x̄1gThi − ml2x̄2gTeix (17)
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where Il1 is the proximal link’s mass moment of inertia about ui,
and Il2 is the distal link’s mass moment of inertia about point O.
Moreover, x̄1 and x̄2 indicate the centers of themass of the proximal
and distal links, respectively, and hi = (ui + vi)/∥ui + vi∥. The
details for a curved link can be found in Appendix A.

Substituting the Lagrangian Lp and Li, i = 1, 2, 3, into Eq. (10),
the terms in the equation of motion for this dynamic system [21]
can be derived. With an external moment vector m, the actuator
torques are expressed as:

τa = τ − J−Tm (18)

This developed dynamic model can effectively compute the
active forces/torques as it takes into account all the mobile
components and external forces/moments. Compared to Staicu’s
work [7], the model developed in this work has a more compact
form, which takes advantages of the unique feature of SPMs
that involves only rotations. Such a formulation can be easily
understood and implemented.

4. Optimization problem of the SPMs design

The foregoing derived dynamic model can be applied in
the optimization procedure to obtain a design with optimal
dynamic performance. Henceforth, this section formulates a design
optimization problem for the SPMs based on their dynamic
modeling. Besides, the kinematic and elastic performances are also
employed to evaluate the SPM design. A predefined workspace is
specified as aminimumpointing cone of 90° openingwith 360° full
rotation, i.e., θ ∈ [0, θmin], θmin ≥ 45°, {φ, σ } ∈ (−180°, 180°].

4.1. Design variables

Variables α1, α2 and β are part of the geometric parameters of
the SPM under study. Moreover, the radius R of the link midcurve
and the side length a of a square cross section of the uniformcurved
links are included as design parameters as well. This implies that
the curved link does not include details such as slots thatmay affect
the total mass and structural strength [22]. As a consequence, the
design variables of the optimization problem at hand are:

x = [α1, α2, β, a, R] (19)

4.2. Objective functions

The mechanism mass influences the dynamic performance,
such as inertia, acceleration, etc., hence, minimizing the mass of
moving bodies is one important consideration. The mass mspm of
the SPM includes the mass mp of the platform, the mass ml of the
distal links, and themassms of the sliding units (or proximal links).
The mass of the revolute joints is not considered for simplification,
thus, the mass function is given as:

mspm = mp + 3ml + 3ms (20)

As a result, the first objective function of the optimization problem
is written as:

f1(x) = mspm → min (21)

The dexterity of SPMs is another major concern in the manipu-
lator design. A commonly used criterion to evaluate this kinematic
performance is the global conditioning index (GCI) [4], which de-
scribes the isotropy of the kinematic performance. The GCI is de-
fined over a workspace Ω , which is calculated through a discrete
approach in practice, namely,

GCI =


Ω
κ−1(J)dW
Ω
dW

or GCI =
1
n

n
k=1

1
κk(J)

(22)
where κ(J) is the condition number of the kinematic Jacobian ma-
trix (8) and n = n1 n2 n3 is the number of the workspace points, n1,
n2, n3 being the numbers of discrete points along φ, θ , σ , respec-
tively. It is known that the higher the GCI, the better the perfor-
mance. Hereby, the second objective function of the optimization
problem is written as:

f2(x) = 1 − GCI = MGCI → min (23)

Henceforth, a modified global conditioning index (MGCI) is intro-
duced for the purpose of optimization.

4.3. Optimization constraints

In this section, the kinematic constraints, condition number of
the kinematic Jacobian matrix, elastic and dynamic performances
of the manipulator are considered. Constraining the condition
number of the Jacobian matrix aims to obtain a dexterous
workspace free of singularity.Moreover, the constraints on the link
strength and the actuator torque are also considered.

4.3.1. Geometric constraints
According to the determination of the design space reported

in [3], the bounds of the parameters α1, α2 and β subject to the
prescribed workspace are stated as:

45° ≤ α1 ≤ 135°, 45° ≤ α2 ≤ 135°, 45° ≤ β ≤ 90° (24)

In accordance with Fig. 5, the following constraints should be
satisfied to avoid any collision,

θij ≥ ϵθ , ∀θij ∈ {θ12, θ23, θ31} (25a)

R sinα1 ≥ R0 (25b)

where ϵθ = 10° and R0 = 0.120m are geometric parameters
relative to the size of curved links.

4.3.2. Condition number of the kinematic Jacobian matrix
Minimizing MGCI, i.e., maximizing GCI, cannot prevent the

prescribed workspace away from ill-conditioned configurations.
For the design optimization to achieve a dexterous workspace,
the minimum of the inverse condition number of the kinematic
Jacobianmatrix κ−1(J), based on the 2-norm, should be higher than
a prescribed value throughout the workspace, say 0.1, namely,

min(κ−1(J)) ≥ 0.1 (26)

4.3.3. Strength constraints
The strength constraints are to ensure the SPM to produce

allowable maximum point-displacement of the rotation center
and angular deflection of the mobile platform subject to a given
wrench. The deflections are computed by

∆x = K−1w; ∆x =

∆pT ∆ϕT T , w =


0 mT T (27)

where ∆p = [∆x, ∆y, ∆z]T and ∆ϕ = [∆ϕx, ∆ϕy, ∆ϕz]
T

are the translational and rotational displacements, respectively,
and K is the Cartesian stiffness matrix given in Appendix B. Let
the static torque of the SPM within the range m = [±mx,max,
±my,max, ±mz,max], the strength constraints can be written as:

−ϵp ≤ ∆t ≤ ϵp, ∀∆t ∈ {∆xk, ∆yk, ∆zk} (28a)

−ϵr ≤ ∆r ≤ ϵr , ∀∆r ∈ {∆ϕx, k, ∆ϕy, k, ∆ϕz, k} (28b)

where ϵp and ϵr are acceptable translational and rotational errors,
respectively, and k = 1, . . . , n is the number of the discrete points
defined in Eq. (22).
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Fig. 5. One extreme configuration of the sliding units.
Fig. 6. The angular velocity and acceleration profiles of the mobile platform: (a) trajectory 1; (b) trajectory 2.
It is noted that the model in Eq. (27) includes only the com-
pliances of curved links. The base and MP are considered rigid.
Moreover, the joint compliance is not addressed in this paper, as
revolute joints are not easily characterized by a generic represen-
tative stiffness due to the nonlinear kinematic joint stiffness upon
the specific design. Such an issue could be well addressed through
stiffness modeling researches.

4.3.4. Actuation torque constraints
With an external moment m = [mx, my, mz]

T applied on the
MP, in accordance to Eq. (18), the actuator torques are redefined
as: τa = |τ|+ |J−Tm|. At any time, the components of the actuator
torque vector τa should be smaller than the maximum continuous
torque Tmax of each actuator. As a result, the actuation torque
constraints can be written as:
max{τa} ≤ Tmax (29)
Henceforth, two alternative trajectories describing the MP orien-
tation:

(1) φ(t) = π cos t, θ(t) =
π

4
, σ (t) =

π

2
cos t (30)

(2) φ(t) =
π

2
cos t, θ(t) =

π

4
, σ (t) = π cos t
are integrated into the optimization procedure implemented with
the Matlab/simulink package. The corresponding angular velocity
and acceleration profiles of the mobile platform are shown in
Fig. 6.

4.4. Formulation of the multi-objective design optimization problem

Themulti-objective design optimization problem for the SPM is
formulated as:

minimize f1(x) = mspm (31)
minimize f2(x) = MGCI

over x = [α1; α2; β; a; R]
subject to g1 : R sinα1 ≥ R0

g2 : θij ≥ ϵθ , ∀θij ∈ {θ12, θ23, θ31}

g3 : θmin ≥ 45°

g4 : min(κ−1(J)) ≥ 0.1
g5 : −ϵp ≤ ∆t ≤ ϵp, ∀∆t ∈ {∆xk, ∆yk, ∆zk}
g6 : −ϵr ≤ ∆r ≤ ϵr , ∀∆r ∈ {∆ϕx, k, ∆ϕy, k, ∆ϕz, k}

g7 : max{τa} ≤ Tmax
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Fig. 7. Simulation results (solid line stands for Matlab solver, dashed line for Adams): (a) motion of the mobile platform; (b) actuator torques.
Table 1
Parameters of the SPM and the initial simulation condition.

α1 (deg) α2 (deg) β (deg) [φ, θ, σ ] (rad) [θ̇1, θ̇2, θ̇3] (rad/s)m (N m)

60 75 75 [0, π/6, 0] [−6, −5, −7] [0.1, 0.1, 0.1]

Table 2
Mass and inertia properties of the SPM model.

Mobile platform Curved link Sliding unit
mp (kg) Ip (10−4 kg m2) ml (kg) Il (10−4 kg m2) ms (kg)

0.332 [3.855 3.855 7.688] 0.107 [1.816 0.081 1.894] 0.123

5. Results and discussion

5.1. Validation of dynamic model

Dynamic simulations were conducted with the developed SPM
dynamic model, the obtained results being compared with those
obtained with MSC Adams, utilizing the properties and simulation
conditions given in Tables 1 and 2. The corresponding simulation
results from the developed model and the Adams simulation are
shown in Fig. 7, which shows a good agreement with each other.

5.2. Design optimization

The optimization procedure is applied to the SPM shown in
Fig. 2(b). The actuation transmission mechanism is a combination
of RE 35 GB actuator and GP 42 C gearhead from Maxon [23].
The components are supposed to be made up of steel, and the
mobile platform is supposed to be a regular triangle. The total
mass ms of each slide unit, including the mass of the actuator,
gearhead, pinions and the manufactured components, is equal
to ms = 2.1 kg. Henceforth, the actuation stiffness is K i

act =

106 N m/rad and the range of the static moment in Eq. (27) is
m = [±10,±10,±10] N m, while the acceptable translational
and rotational errors are ϵp = 1 mm and ϵr = 0.0349 rad,
respectively. Moreover, the maximum continuous torque of the
actuator is Tmax = 15 N m and the external moment applied on
the mobile platform and expressed in the base frame along the
trajectories defined by Eq. (30) ism = [5, 5, 5]T N m.

The solutions of the previous optimization problem are non-
dominated solutions, also called Pareto-optimal solutions, which
stand for solutions for which the corresponding objectives cannot
be further improved without degrading others. Problem (31) is
Fig. 8. The Pareto-front of the multiobjective optimization problem (31).

solved by the genetic algorithm NSGA-II [24] implemented in
Matlab, for which the algorithm parameters are given in Table 3.
The lower and upper bounds of the design variables are shown in
Table 4, denoted by xlb and xub, respectively.

The Pareto-front of the optimization problem at hand is shown
in Fig. 8. Three Pareto-optimal solutions named ID-I, ID-II and
ID-III on the Pareto-fronts, i.e., two extreme solutions and one
intermediate solution, described in Table 5, are selected for further
consideration. The CAD designs of these three Pareto-optimal
solutions are shown in Fig. 9 and the corresponding dynamic
simulations are illustrated in Fig. 10, respectively, from which it is
seen that from ID-I to III, themaximum actuating torque increases.
By comparison among the three groups of design variables in
Table 5, smaller α1 and larger α2 yield higher wrench capability
under given input torques. Although the design ID-III has the
lowest mass, it has the highest requirements on the actuators.
From the kinematic and dynamic considerations, design ID-I can
be selected for further application as an active joint.

Fig. 11, obtained with plotmatrix and corrcoef functions in
Matlab, illustrates the variational trends as well as the inter-
dependency between the objective functions and design variables
by means of a scatter matrix [11,18]. The lower triangular part
of the matrix represents the correlation coefficients whereas the
upper one shows the corresponding scatter plots. The diagonal
elements represent the probability density charts of each variable.
The correlation coefficients vary from −1 to 1. Two variables are
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Fig. 9. CAD designs of three Pareto-optimal solutions: (a) ID-I, (b) ID-II, (c) ID-III.
Table 3
Algorithm parameters of the implemented NSGA-II.

Population size Number of generations Directional crossover probability Crossover probability Distribution index

40 200 0.5 0.9 20
Table 4
The lower and upper bounds of the design variables.

α1 (deg) α2 (deg) β (deg) a (m) R (m)

xlb 45 45 45 0.005 0.120
xub 135 135 90 0.030 0.300

strongly dependent when their correlation coefficient is close to
−1 or 1 and independentwhen the latter is null. Fig. 11 shows that:

• mspm and MGCI are strongly dependent as their correlation
coefficient is equal to −0.984;

• mspm and MGCI are strongly dependent on the design variables
except a as the mass of the sliding units mainly affects the total
mass, thus, a slightly affectsmspm;

• both objective functions are approximately linearly related to
variables α1, α2 and R;

• all the variables are strongly dependent on each other except a;
• the results show that β is close to 90° for all Pareto-optimal

solutions;
• it is noteworthy that the highermspm, the lower α1. Conversely,

the highermspm, the higher α2. Higher R results in highermspm.

6. Conclusions

In this paper, the inverse dynamics and geometric synthesis of
spherical parallel manipulators were discussed. Using the classical
method of Lagrange multipliers, the equations of motion for the
SPMs were derived. The expressions for the kinetic energy are
associated with the characteristics of motion, namely, all the SPM
bodies rotating about the center of rotation. All the moving bodies
are taken into account to describe this dynamic system effectively
and clearly. The developed dynamic model is integrated into the
design optimization procedure of the SPMs.
A multiobjective design optimization problem was formulated
in order to determine the mechanism optimum structural and ge-
ometric parameters. The objective functions were evaluated based
on the kinematic and kinetostatic/dynamic performances of the
manipulators. This approach has been illustrated with the op-
timum design of an unlimited-roll spherical parallel manipula-
tor, aiming at minimizing the mechanism mass and increasing its
dexterity. As a result, the Pareto-front was obtained to show the
approximation of the optimal solutions between the various (an-
tagonistic) criteria, subject to the dependency of the performance.
It turns out that the manipulator has the best performance with
β = 90°.

As a matter of fact, the method offers a great flexibility to select
any criterion as an objective function based on requirements. A
contribution of the work is the formulation of different kinds of
performances ranging from kinematics, statics to dynamics. All
these formulations ease the modeling and simulation, and can be
used for other design optimization tasks in future work.

Appendix A. Mass moment of inertia

The mass moment of inertia of the mobile platform about point
O [25] is given by

Ip = mpR2 cos2 β[p]×[p]
T
×

+ QI′pQ
T (A.1)

where mp is the mass, I′p is the inertia tensor in its local frame
(xp, yp, zp), and [p]× = CPM(p) is the skew-symmetric matrix,
p being the unit vector of zp axis in Fig. 4.

A parameterized curved link with uniform cross-section is
shown in Fig. 12, its center of mass being found as

Rαx̄ = R2
 α

2

−
α
2

cosϕdϕ or x̄ =
2R
α

sin
α

2
(A.2)
Table 5
Three Pareto-optimal solutions.

Design Variables Objectives
ID α1 (deg) α2 (deg) β (deg) a (m) R (m) mspm (kg) MGCI min(κ−1(J))

I 47.2 91.7 88.4 0.0120 0.1659 8.882 0.449 0.253
II 51.9 85.0 88.3 0.0113 0.1525 8.394 0.545 0.240
III 63.5 72.2 89.6 0.0119 0.1342 7.962 0.745 0.102
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Fig. 10. The dynamic simulation results for the three Pareto-optimal solutions: (a) ID-I; (b) ID-II; (c) ID-III.
Fig. 11. Scatter matrix for the objective functions and the design variables.
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Fig. 12. A curved link.

Let the link’s mass be ml, its moment of inertia about point O is
found as [25]:

Il = mlx̄2[i]×[i]T
×

+ EI′lE
T (A.3)

where [i]× = CPM(i), and E = [i j k], i, j, k being the unit
vectors of x, y and z-axes. Moreover, the mass moments of inertia
I′l = diag[Lxx Lyy Lzz] in the frame (x, y, z) are expressed as:

Lxx =

 α
2

−
α
2

(R sinϕ)2 ·
ml

Rα
· Rdϕ =

1
2
mlR2


1 −

sinα
α


(A.4a)

Lyy =

 α
2

−
α
2

(R sinϕ − x̄)2 ·
ml

Rα
· Rdϕ

=
1
2
ml


R2 sinα
α

−
8Rx̄
α

sin
α

2
+ R2

+ 2x̄2


(A.4b)

Lzz =

 α
2

−
α
2


(R sinϕ)2 + (R cosϕ − x̄)2


·
ml

Rα
· Rdϕ

=
1
2
ml


R2

+ x̄2 −
4Rx̄
α

sin
α

2


(A.4c)

Moreover, the mass moment of inertia about r is derived as

Il = ml


x̄ sin

α

2

2
+

 α

0
(R sinϕ)2 ·

ml

Rα
· Rdϕ

=
1
4
mlR2


(1 − cosα)2

α2
+ 2 −

sin 2α
α


(A.5)

Appendix B. Cartesian stiffness matrix

With the virtual-spring approach [26], the Cartesian stiffness
matrix K of the SPM is found as

K =

3
i=1

Ki (B.1)

Here Ki ∈ R6 is the Cartesian stiffness matrix of the ith leg,
extracted from the first six-dimensional block of matrix K′

i

K′

i =


Jiθ (K

i
θ )

−1Ji
T

θ Jiq
Jiq

T 02

−1

(B.2)

with

Jiθ =


$̂
i
A $̂

i
u1 ... $̂

i
u12


∈ R6×13 (B.3a)

Jiq =


$̂
i
B $̂

i
C


∈ R6×2 (B.3b)
Fig. 13. Link deflections and joint displacements of a flexible leg.

According to Fig. 13, the unit screws are given by

$̂
i
A =


ui
0


, $̂

i
B =


vi
0


, $̂

i
C =


wi
0


$̂
i
u1 =


xi1

bi × xi1


, $̂

i
u2 = $̂

i
B, $̂

i
u3 =


zi1

bi × zi1


,

$̂
i
u4 =


0
xi1


, $̂

i
u5 =


0
vi


, $̂

i
u6 =


0
zi1


$̂
i
u7 =


xi2

ci × xi2


, $̂

i
u8 = $̂

i
C , $̂

i
u9 =


zi2

ci × zi2


,

$̂
i
u10 =


0
xi2


, $̂

i
u11 =


0
wi


, $̂

i
u12 =


0
zi2


(B.4)

and Ki
θ ∈ R13 describes the stiffness of the actuation and virtual

springs, taking the form:

Ki
θ = diag


K i
act Ki

L1 Ki
L2


(B.5)

where K i
act is the ith actuator stiffness,Ki

L1
andKi

L2
, respectively, are

the 6× 6 stiffness matrices of the proximal and distal curved links
in the ith leg, which can be found in [27].
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