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A drive train optimization method for design of light-weight robots is proposed. Optimal selections of
motors and gearboxes from a limited catalog of commercially available components are done simulta-
neously for all joints of a robotic arm. Characteristics of the motor and gearbox, including gear ratio, gear
inertia, motor inertia, and gear efficiency, are considered in the drive train modeling. A co-simulation
method is developed for dynamic simulation of the arm. A design example is included to demonstrate
the proposed design optimization method.
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1. Introduction

The drive train is the core part of a robot system, with significant
impact on the cost and performance of the whole system. To
achieve a light-weight design, drive train optimization plays a key
role. A number of methods for motor and gear selection in mecha-
tronic systems have been proposed. Pasch and Seering [1] studied
maximizing the system acceleration by optimal selection of trans-
mission ratio. van De Straete et al. [2,3] proposed a general method
of motor and gearbox selection for optimization of servo drive sys-
tem. The method automates the solution procedure for the servo
drive design problem by virtue of the normalization of torques,
velocities, and transmission ratios. Cetinkunt [4] proposed an opti-
mization approach of balancing the high speed and precision in ser-
vo systems. Cusimano [5,6] presented a procedure for optimal
selection of an electrical motor and transmission. Roos et al. [7] pro-
posed a method of finding the best motor/gear ratio combination
for any given load with respect to weight, size, peak power, torque
and efficiency. The methods above are applicable to the design of a
single joint combining a motor and a gearbox, and they do not ad-
dress the discrete nature of the selection process.

For the design of robotic drive train consisting of multiple
joints, the challenge is that not only the characteristics of motor
and gearbox at a single joint, but also the dynamics of the robot
should be taken into account, the latter varying with the selection
of components and link dimensions. Furthermore, the optimization
procedure adopted has to be capable of handling discrete design
variables because the transmission is typically composed of com-
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mercially available components. Very few methods are available
for the optimization of the entire drive train of a robot under con-
straint of available components. A method for the optimum selec-
tion of robot actuators was proposed in [8], with objective to
minimize the total mass of all the actuators under torque and tem-
perature constraints. Pettersson and Olvander [9] reported recently
a method of design optimization, in which drive train for two joints
were optimized for an industrial manipulator. The method is not
applicable to selection of components from a catalog. An evolution-
ary approach of optimization on robot configurations was reported
in [10]. A simulation environment called Modelica with robot opti-
mization characteristic was presented in [11], where the parame-
ters of a controller can be tuned by a multi-criteria parameter
optimization method to improve the system dynamics. DLR’s 7-
dof (degrees of freedom) torque-controlled light-weight robotic
arm was built with customized motors and gearboxes to achieve
a low weight [12]. Methods of robot optimization can also be found
in [13-15], among others.

In this paper, an optimization method for drive train design of a
light-weight robotic arm is proposed. The method is applicable to
serial robotic arms, aiming at minimizing the arm weight. In the
method, the optimization is carried out with a prescribed trajec-
tory of the end-effector, generated within the robotic arm’s work-
space. Moreover, the inverse kinematic analysis was conducted in
ADAMS to verify that the trajectory is within the joint space. A dy-
namic model of the robotic arm is developed, upon which an opti-
mization problem is formulated. A non-gradient optimization
method, namely, the Complex [16], is implemented to run the opti-
mization. The method is implemented on a co-simulation platform,
where robotic dynamics is determined using MSC.ADAMS™, and
the complex optimization is performed in Matlab™.
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Nomenclature

4 vector of gravitational forces
o(t) joint acceleration (rad/s?)
o(t) joint speed (rad/s)

g gear efficiency

M mass matrix

q position vector

R rotation matrix

u,(ug) index numbers for motors (gearboxes)
\' vector of Coriolis and centrifugal terms

Xp(Xw)  best (worst) point

X(Xcana) centroid (candidate) point
gear ratio

7(t) required joint torque (Nm)

JmUs) motor (gear) inertia (kg m?)
mm(mg) motor (gear) mass (kg)

Ng® max permissible input speed of gearbox (rpm)
A max permissible motor speed (rpm)

np required motor peak speed (rpm)

Nin required max input peak speed (rpm)

Tg™ limit for momentary peak torque of gearbox (Nm)
T motor stall torque (Nm)

Ty limit for rated torque of gearbox (Nm)

T motor nominal torque (Nm)

Ty required gear peak torque (Nm)

Tm required motor torque (Nm)

Tp required motor peak torque (Nm)

Trme RMC value of required joint torque (Nm)

Trms RMS value of required motor torque (Nm)

2. Conceptual design of a robotic arm

The light-weight robotic arm considered in this paper has five
degrees of freedom (dof), with two dof at the shoulder, one at
the elbow, and two at the wrist, as depicted in Fig. 1. The arm is de-
signed for assisting elderly and handicapped people in daily living
[17]. Light-weight design of such robotic arms is required for safety
and energy efficiency.

In this design, harmonic drives are used as gearing elements.
The motors and harmonic drive gearboxes are mounted inside
the joints, while the axes of rotation coincide with the joint axes.
The physical realization of Joint 2 is illustrated in Fig. 2. The same
conceptual design is used for all 5 joints.

While the topology of the individual transmission is fixed, the
motors can be chosen from either permanent magnet DC motors
or brushless DC motors. Maxon™ motors are used in this study.
The gearboxes are limited to Harmonic Drive™ backlash-free coax-

Joint 2

Joint 1

Joint 3

Joint 4

Joint 5

Fig. 1. A 5-dof light-weight robotic arm.

ial gears. Both components are considered appropriate for imple-
menting the proposed design optimization method, that may
easily accommodate a wider variety of gearboxes and motors.
The arm structures are made of aluminium.

3. Kinematics and dynamics
3.1. Kinematics

The forward kinematics of the robotic arm is formulated based
on the Denavit-Hartenberg (D-H) convention [18]. A Cartesian
coordinate system is attached to each link of the robotic arm, as
shown in Fig. 3. D-H parameters are defined as listed in Table 1.
The detailed solution of the forward kinematics can be found in
Appendix A.

For given locations of the end-effector, the joint variables are
found by inverse kinematics. The method presented in [19] was
adopted for this purpose. The detailed solution of the inverse kine-
matics can be found in Appendix B.

3.2. Inverse dynamics

The computation of the inverse dynamics is a prerequisite for
evaluating any given design with given load and prescribed trajec-
tory. Here we briefly recall the Lagrange-Euler formulation, which
is

oLy _oL_
dt\op,) 00, "

where the Lagrangian L = K — U = 3, (K; — U;). For the ith link, the
kinetic energy K; and the potential energy U; are given by

i=1,...,5. (1)

1 1
Ki=smivivs +-ollo; U =mg'p, 2)

2 2
where v,; denotes the linear velocity of the center of mass for link i,
w; is the angular velocity of the same link, and I; is the inertia matrix
of link i with respect to its center of mass. Moreover, p; is the posi-
tion vector of the center of mass for link i, measured in the reference
coordinate system.

Substituting Eq. (2) into (1) produces equations of motion as

M(0:)8; + v (6, 0;) + &(0) = = 3)

where M is the mass matrix, v is the vector of Coriolis and centrif-
ugal terms of the links, ¢ is the vector of gravitational forces, and 7 is
the vector of joint torques.

Eq. (3) can be solved with different approaches [20,21]. In this
work, the dynamics solutions are found through ADAMS, which
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Harmonic Drive Maxon motor
Gearbox

(a)

Encoder

) Rotary part of
Link  Harmonic Drive

Joint hub

Fixed part (fixed to hub)
of Harmonic Drive

(b)

Fig. 2. Joint mechanism for Joint 2, (a) 3D view, (b) section view.

Fig. 3. Robotic arm coordinate system.

Table 1

D-H Parameters of the robotic arm.
Joint i o a; d; 0;
1 /2 0 hy 01
2 0 11 0 02
3 /2 0 0 03
4 —71/2 0 L 04
5 w2 0 d; 0s

directly takes advantage of the accurate geometry and mass prop-
erty of a CAD embodiment for computations. In the meantime, a
Matlab solver adopted the recursive approach [22] was also devel-
oped for the purpose of comparison, which is discussed in
Section 6.

3.3. Drive train modeling

Eq. (3) yields the required joint torque t(t), if the motion is pre-
scribed. The motor torque for each joint can further be determined,
as seen in Fig. 4. For the harmonic drive gearbox, the gear efficiency
varies depending on the output torque. With the inertia of motor
and gear, the required motor torque for the ith joint is derived as

Tm,i_{(]m+]g)é(t)p+:)(—’2}i; i=1,...,5 4)

where p; is the gear ratio, Jg; is the gear inertia with respect to the
input motor axis, Jm; is the motor inertia, and #g; is the gear
efficiency.

4. Formulation of design problems

The criteria for selecting motor and gearbox are applicable to
each single joint, thus subscript i’ is omitted in this section for
clarity.

4.1. Motor selection criteria

Motors for robotic arms are usually selected from two motor
groups, brushed and brushless DC motors. In selecting motors,
the following three constraints must not be violated:

Nominal torque limit. The nominal torque is the so-called maxi-
mum continuous torque. The root mean square (RMS) value 7,5 of
the required motor torque 7,, has to be smaller than or equal to the
nominal torque of the motor T,

Gearbox

Fig. 4. Schematic view of drive train model for a single joint.
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Trms < Tm (5)

where Ty, = ‘/ﬁ fom 72,dt, with At being the duration of a charac-
teristic working cycle.

Stall torque limit. The stall torque is the peak torque of the mo-
tor. The required peak torque 7, has to be smaller than or equal to
the stall torque T,,* of the motor

T, < TH (6)

where 7, = max{|tm|}.

Maximum permissible speed limit. The maximum permissible
speed for DC motors is primarily limited by the commutation sys-
tem. A further reason for limiting the speed is the rotor’s residual
mechanical imbalance which shortens the service life of the bear-
ings. The required peak speed n, corresponding to the motor has to
be smaller than or equal to the maximum permissible speed N;*
of the motor

np < Ny (7)

where n, = max{|270(t) - p|}.
The inequalities (5)-(7) represent the constraints that must be
fulfilled by any motor in the drive train.

4.2. Gearbox selection criteria

In the selection of gearboxes, the following three constraints are
considered:

Rated output torque limit. It is recommended by the Harmonic
Drive gearbox manufacturer to use the RMC value for calculating
rated torque [23]. The RMC value is a measure of the accumulated
fatigue on a structural component and reflects typical endurance
curves of steel and aluminium [24]. It is therefore relevant to gear-
box lifetime, and this criterion has also been used in robotic appli-
cations [25]. With this criterion, a constraint is derived as

Trme < T (8)

where Ty = \/At ]0 3(t)dt, with t(t) being the required torque

from the gearbox output T, is the limit for rated torque of the
gearbox.

Maximum output torque limit. The required peak torque 7z with
respect to the output side has to be smaller than or equal to the
allowable peak torque Ty of the harmonic drive

,L.g Tmux (9)

where 7, = max{|t(t)|}.

Maximum permissible input speed limit. The required maximum
input peak speed n;, has to be smaller than or equal to the maxi-
mum permissible input speed Ny of a gearbox

Ny < NI (10)

where n;, = max{|d(t) - p|}.

The inequalities (8)-(10) represent the constraints that must be
fulfilled by any gearbox in the drive train.

Although the inequalities (5)-(10) are derived specifically from
the selection criteria for the motors and gearboxes considered in
this paper, they are quite general, and would be recognized in
any selection procedure for motors and gearboxes suitable for ro-
botic arm design.

4.3. Objective function formulation

The objective of the optimization is to minimize the mass of the
robotic arm. In this formulation, we minimize only the mass of the
power transmission, while the mass of the arm structures (mgqm)
remains constant. Therefore, the optimization task is to find the
lightest combination of motor and gearbox for all five dof that

fulfill all constraints associated with the motors and gearboxes.
The objective function, f(x), is defined as the sum of the mass of
the motors and gears, as shown in Eq. (11a).

min f(x) Z{mm u,) +mg(ug)}; (11a)
i=1
X = [Upy, Ug]
ST.
2
e o s S0
Ts > J 3 {um(x) 0P+ }i d (1)

T > max{ X) +J (x NOE)p +% },- (11c)

NT > max{\ZnO p\}l (11d)
; A

Ty = At J, T3 (t,X) - dt (11e)

Ty > max {|t(t,x)|}; (11f)

Np > max {10 - pl | (11g)

where design variables x includes the index numbers of motors
Uy, = [Un1,. . Ums] and gearboxes ug = [ugy,. . ., lUgs), relative to dat-
abases containing commercially available components. So far, we
have formulated the design problem as a discrete optimization
problem, which can be solved by commercially available codes.
We select a non-gradient method called Complex for this purpose.
The implementation is outlined in the next section.

5. Procedure of optimization

The optimization method is developed as a Matlab and MSC.A-
DAMS co-simulation platform. The optimization algorithm is based
on the Complex method, which is briefly discussed.

5.1. Optimization by complex

The Complex method is a non-gradient based optimization
method, first presented by Box [16].

In the Complex method, several possible designs (design popu-
lation) are manipulated. The method is based on a feasible domain,
containing a design population as a set of design points. The num-
ber of design points has to be greater than the number of indepen-
dent design variables. The starting design points (initial
population) are randomly generated, and evaluated through the
objective function to check performance and constraint violation.
Among all populations, the set of design variables having the min-
imal objective function is denoted as the best point x;, while the
one having the maximal objective function is denoted as the worst
point X,. Their corresponding values of objective function are
noted as the best and worst values. The centroid point is calculated
as

1 m
X =—— Xi, Xi#Xp (12)
m-—1 ;

Xi = [X1,X2,...,X], m>n (13)

The main idea of the Complex method is to replace the worst point
by a new and better point. The new point is found by the reflection
of the worst point through the centroid with a reflection coefficient
a, yielding the following expression for the new design point

Xeand = Xc + OC(XC - xw) (14>
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The coefficient o = 1.3 is used in this study, as recommended in [16].
The candidate point X.4nq is checked through explicit and implicit
constraints. When it conforms to the constraints, X..n.g replaces
Xw. This method cannot handle the situation when the centroid is
trapped in a local minimum. Therefore, the method has been mod-
ified such that the point moves towards the best point if it contin-
ues to be the worst one. To avoid the collapse of the algorithm, a
random value is also added to the new point. The modified method
to calculate the reflection point is given as

1
Xeand = 5 (Keana + 8% + (1= €)%) + (X =%)(1 = 8)(2k=1)  (15)

where k is a random number varying in the interval [0,1], with

nr+kp—1
nr

n
&= (nr+k,—l> (16)

Here k, is the number of times the same point has repeatedly been
identified as the worst point, and n, is a tuning parameter which is
set to 4. The convergence criterion of the Complex method in this
work is that the difference between the best and worst objective
function values is less than a user defined tolerance.

5.2. Dynamics model with MSC.ADAMS

The drive requirements of the whole robotic arm system are
determined from inverse kinematic and dynamic analysis within
MSC.ADAMS. The inverse kinematic and dynamic analysis is devel-
oped as a simulation package, which will be called by the optimi-
zation program. To this end, the mass of motors and gearboxes are
parameterized, while the trajectory of the robotic arm is pre-
scribed. For each variation of motors and gearboxes, the required
motor torques are accurately calculated. The mass of distribution
is updated during the optimization procedure.

The inverse kinematic and dynamic analysis of the robotic arm
in ADAMS follows a so-called master-slave approach, as shown in
Fig. 5. The basic concept of this approach is that we make two mod-
els of the robotic arm in ADAMS, a master model and a slave one. In
the master model, the inverse kinematic analysis is executed to re-
cord the joint motions corresponding to the prescribed end-effec-
tor trajectory. In the slave model, the joint motion data is

Master model Slave model
End_.effector Payload
Trajectory
Master model Slave model
in ADAMS in ADAMS

Inverse
dynamic
analysis

Inverse
kinematic
analysis

Solved joint Solved joint
motions torques
|
——_—__1

Fig. 5. The procedure of inverse kinematic and dynamic analysis.

imported and imposed on the joints, and payload is also attached
to the end-effector. Then the inverse dynamic calculation is per-
formed to solve the required joint torques for actuating the robotic
arm.

In the master-slave approach, we can define different trajecto-
ries and payloads for the robotic arm model, which makes the
model more flexible for different simulation conditions. This ap-
proach can be applicable to other serial and parallel robot systems.

5.3. Matlab-ADAMS co-simulation platform

The design optimization is mainly concerned of two tasks: the
optimization routine and creation of a parametric dynamic simula-
tion model. Both tasks can be performed on a Matlab-ADAMS co-
simulation platform developed in this work. As shown in Fig. 6,
the platform works with two modules. The ADAMS module is used
to simulate the inverse kinematics and dynamics of the robotic
arm. The Matlab module implements the Complex method to call
the ADAMS simulation in batch mode.

6. An example of design optimization

Design optimization was conducted on the 5-dof light-weight
robotic arm. The link lengths of the robotic arm are fixed. The tra-
jectory of the end-effector in the base coordinate system is defined
as Xe(t)= 50+400(1 — cos(t)), Yef(t)=—1000+800(1 — cos(t/2)),
and Z(t) = 280 + 250(cos(t/2) — 1), all with unit of mm. The corre-
sponding velocity and acceleration profiles of the trajectory are de-
picted in Fig. 7. The Euler angles for the end-effector are given as
[sin(t/180),0,0], which implies the end-effector remains horizontal
during the prescribed motion. The motion of the end-effector is
illustrated in Fig. 8.

The payload is defined as a mass point in ADAMS and weights
2 kg. On the other hand, the mass of motors and gearbox are deter-
mined from their indices selected. The solved motions of each
joint, as shown in Fig. 9 for Joint 1, are imported into ADAMS to
generate arm dynamics.

Ten candidate motors from the Maxon Motor catalog are ar-
ranged ascendingly with respect to the mass of motor, as shown
in Table 2.

The gearboxes used in the robotic arm are selected from har-
monic drive CPU units, as listed in Table 3. For the harmonic drive
gearboxes, the efficiency is a function of operation speed. In this
paper, the gear efficiency is set as 17, =0.85 for all gearboxes, for
simplicity.

In order to simplify the process of selecting motors and
gearboxes, the gear ratio of each joint is fixed as p =[344,444,
100,51,100], orderly from Joints 1-5. The gear ratio is based on
previous investigation of joint torques. The ratios p; and p, are
combinations of two gearboxes, a planetary gearhead and a
harmonic drive unit, to achieve high gear ratio. For simplicity, the
mass of the planetary gearhead is fixed, while only the mass of the
harmonic drive gearbox is manipulated.

The gearbox is selected for each joint, associated with the selec-
tion of motor. The harmonic drive CPU unit is used in all joints ex-
cept Joint 4, due to the joint structure consideration. A planetary
gearhead is used in Joint 4, so ugs = 0.

6.1. Optimization results

An optimized design of motor and gearbox for the robotic arm
was found, as listed in Table 4. The optimized weight of the robotic
arm is 10.2 kg, with a reduction of 38% corresponding to the initial
combination of motors and gearboxes.
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Stop

Matlab ADAMS
Generate initial Write input file for Execute ADAMS
population size i » ADAMS simulation »  simulation in
m i=1 for design #i batch mode
% Write output file
from Adams
Replace x,,
With Xeang No 0 Yes
\ J
fatetiy s 7))l Mirror X, in X Execute ADAMS
design and > ) .
) <0.0001 to get simulation for
worst design
Xcand Xcand
Xp X,
= A
Adjust mirror
procedure
A

No

Fig. 6. Diagram of the optimization routine in the co-simulation platform.

The convergence of the objective function is depicted in Fig. 10,
where both the best and the worst objective function values from
the Complex algorithm are displayed. The solution to the optimal
result is achieved after 3160 iterations with a population size of
140. In this work, the tolerance of convergence criterion is set to
0.0001. It is noted from Fig. 10 that at the 1500th iteration, the dif-
ference between the best and the worst f{(X) values is 0.03, which
means the convergence criterion is not met at that point, even
though two values appear to be very closer.

Fig. 11a illustrates the convergence of the motor design vari-
ables. Note that only convergence curves for Joints 1 and 5 are dis-
played for clarity. The convergence of the gearbox design variables
is depicted in Fig. 11b. Comparing the convergence rate for the
motor and gearbox design variables, the gearbox design variables

0.5

0.4

0.3

0.2

0.1

End-Effector Velocity [m/s]

0 1 2 3 4 5 6
Time [s]

(a) Velocity profile

converge faster than the motor design variables. A possible expla-
nation is the mass difference between the harmonic drive units is
larger than that between the motors.

Based on the optimization results, the motor torques are ob-
tained for Joints 1, 2, 3 and 5, as shown in Fig. 12, where torques
for initial designs are also displayed for comparison. It is seen that
the optimal design reduces the peak torque by 31.8% reduction for
Joint 1 and by 40% for Joint 2.

To verify the accuracy of the solved joint torques from the co-
simulation platform, another program was developed for simula-
tion with Matlab only. The joint torques obtained with the two
methods are shown in Fig. 13 for the same robot trajectory. Higher
torques calculated by the co-simulation platform were observed
for both Joints 1 and 2. The reason is that ADAMS in the co-

o
o

0.45
04F}
0.351
0.3}
0.25
0.2}
0.151

End-Effector Acceleration [m/sz]

o
o
-
N
w
IN
o
o

Time [s]

(b) Acceleration profile

Fig. 7. Velocity and acceleration of the end-effector trajectory.
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Fig. 8. Illustration of a prescribed end-effector motion.
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0.8
0.6
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Time [s]
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Fig. 9. Velocity and acceleration of the 1st joint.

-0.6

simulation platform can calculate torques with more precise mass Table 3

distribution, while the Matlab solver calculates the mass matrices

Time [s]

(b) Acceleration profile

Candidate gearbox data from harmonic drive [27].

using simple and regular geometry of links. The difference in mass Index CPUunit Ratio T, T Ny Jg (kgm?) m,
matrices is demonstrated in Eq. (17) for Link 2, where I'; is calcu- no. size (Nm) (Nm) (rpm) (kg)
lated by the Matlab solver and I, is by ADAMS. 1 14 100 11 54 8500 0033x10* 054
2 17 100 39 110 7300 0.079 x 1074 0.79
3 20 100 49 147 6500 0193 x107* 1.3
4 25 100 108 284 5600 0413 x107* 195
Table 2
Candidate motor data from Maxon Motor [26].
Index Maxon T T N Im My
no. Motor (Nm) (Nm) (rpm) (gcm?)  (kg) Table 4
Optimization results for minimization of weight.
1 EC45 flat  0.0843 0.822 10,000 135 0.1
2 RE 25 0.0284 0.28 14,000 10.5 0.13 Joint Initial Optimized
3 RE 26 0.0321 0.227 14,000 121 0.15
4 EC-i 40 00667 1.81 15,000 242 021 Motor __ Gearbox Motor Gearbox
5 RE 30 0.0882 1.02 12,000 34.5 0.238 1 RE 40 CPU 17 EC 40 CPU 17
6 EC 32 0.0426  0.353 25,000 20 0.27 2 RE 35 CPU 17 EC 45 flat CPU 17
7 RE 35 0.0965  0.967 12,000 67.4 0.34 3 RE 35 CPU 17 EC-i 40 CPU 14
8 RE 36 0.0795 0.785 12,000 67.2 0.35 4 RE 35 Gearhead EC 45 flat Gearhead
9 EC 40 0.127 094 18,000 85 0.39 5 RE 35 CPU 17 EC 45 flat CPU 14
10 RE 40 0.184 25 12,000 138 0.48 Arm weight (kg) 16.7 10.2
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Fig. 10. Convergence plot for the weight of the robotic arm.
[0.0076 0 0
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[ 0.008 —0.00032 -0.00008
L, = | -0.00032 0.0069  0.00037 | (kgm?) (17)
| —0.00008 0.00037 0.0049

6.2. Design variables programming

The design points in the Complex method are usually continu-
ous. But the design variables u,,; and ug; have to be integers, since
they are the index numbers from the databases of motors and gear-
boxes. Two ways of dealing with the design variables are investi-
gated in order to confirm a more efficient one. One way is called
rounded design variable (RDV), the other one called linear design
variable (LDV).

Rounded design variable (RDV). For the RDV method, a rounding
function is introduced to transfer the design variables into integers.
The rounding function is given as

Xine; if Xine <X < Xine +0.5
Xpy = round(x) = { mt L me (18)
Xine + 15 if Xipe 0.5 <X < Xipe + 1
10 . . : : : .

E‘ 92 AN 1
>

g 8 1
©

O 7 i
S

5 6 1
=

e 5 1
g 4 1
g

z 3 1
3 2t .
e)

[

-~ 1 f —+— Joint1 E

0 ; ; ; ; ; ;
0 500 1000 1500 2000 2500 3000 3500
Iteration Number
(a) Motors

where x is the design variable manipulated by the Complex method,
Xint is the integral part of the number x, and xpy is the rounded de-
sign variable. xpy is used to update the mass of motors and gear-
boxes in inverse dynamic analysis, as well as the allowable torque
and speed values used to examine constraint violations.

Linear design variable (LDV). For the LDV method, the mass be-
tween two adjacent motors (or gearboxes) in the category is line-
arized by the function

M(X) = M(Xine) + (X = Xine) - [M(Xine + 1) = M(Xinc)] (19)

where m(x;,;) is the mass of the component (motors from Table 2
and gearboxes from Table 3) corresponding to the index number
Xint,m(X) is the mass to be updated for the component in inverse dy-
namic analysis.

Comparison has been conducted upon the RDV and LDV meth-
ods of dealing with the integer design variables, as listed in Table 5.
In general, the LDV method yields better results at the cost of more
iterations and objective function evaluations. In the above exam-
ple, the RDV method has been preferred, however, the choice of
method must in general be a compromise between accuracy and
optimization time.

7. Conclusions

A method was developed for the optimum design of robotic
drive trains. The selection of motors and gears was formulated as
a discrete optimization problem, which was solved by a non-gradi-
ent optimization algorithm. Constraints were formulated by con-
sidering both motor and gearbox characteristics and robotic arm
dynamics. The proposed method is able to reach a design with low-
er mass for a given set of driving components. A co-simulation
platform consisting of a MSC.ADAMS dynamics model and an opti-
mization algorithm implemented in Matlab code was developed,
which enables design optimization based on dynamics of an
embodiment existing in CAD systems. Such a platform not only
yields accurate dynamic calculation for drive train optimization,
but also leads to a possible integrated optimization for both arm
structures and drive trains.
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Table 5
The comparisons of RDV and LDV.
Population RDV LDV
fix) Iteration fx) Iteration
20 11.142 213 10.633 1499
40 10.952 927 10.703 2607
60 10.458 1444 10.414 6303
80 10.402 3026 10.122 7306

Appendix A

The transformation matrix in forward kinematics of the end-
effector in fixed reference frame is given as:

04, — {g ‘11] (A1)
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with the rotation matrix R and position vector q being given by

Uy Uy Wy qx
R=\|u v w|, q=]g (A2)
u v, w, 4,

The forward kinematics of the robotic arm is solved as below:

Uy = C05(S01504 + €01C023€04) — €015023505,

Uy = —C05(c01504 — $01C023¢04) — 5015023505,

U, = CHy3505 + S033C04C05,

Uy = S01CO4 — CO1CO3504,

vy = —801C023504 — €014,

U, = —S03504,

Wy = S05(501504 + €O1C023€04) + 01502305,

Wy = —505(c01504 — $01C023€04) + 561502305,

W, = S0,3€04505 — c0,3€05,

q, = l1¢0:1¢05 + 1015023 + dq - (50104 — CO1C0x3504),
qy = hs01¢0, 4 15015023 — dy - (C01€04 + 501C023504),
q, = hi + 1156, — L,cOy3 — d150,3504,

where c0,3 stands for cos(0, + 03), and s0,3 for sin(0, + 03).

Appendix B

The joint angles for a given pose in terms of R and q can be
found through the inverse kinematics presented below.
Skipping details, a solution for 6, is found as

0; = arctan <&> (B.1)
X
where py = g, — dywy and p, = q, — d;w,. Eq. (B.1) leads to two solu-
tions of 64, i.e. 6; = 67 and 0; = 0] + 7, where 0 < 0] < 7. They rep-
resent two branches of arm kinematics. The real value depends on
the initial configuration.
The solution of 05 is given as

0; = arctan | £ 121 K2 — (k3 —K1)>>0 (B2)

K2 — (K3 —11)°

where K1 =5+ 5,1 =2l k3 = p2 +p2 + (p, — i), and
pz=q; — dw,.
Once 0, and 03 are known, 0, can be obtained as
0, — arctan (Hz"lyl - ,“1'12)(%2,“1 —flﬂz) (B.3)
(M8 = 1,8)(Gany — Giny)
where

= b +bs0s, G =hes, 1y = pycor 4 pysoy;

Uy, = —hels, & =1 +Lsos, 5, =p, — hy.

05 takes the form of

05 = arccos(wxC015023 + Wys015023 — W,C0,3) (B.4)
Assuming that s0s = 0, we can solve for 6,4 as follows.

04 = arctan(sfy, cls) (B.5)

where
WxC01COp3 + WyS0;CO,3 + W,S0,3 WyS01 — wyc04
cO4 = 3 S0y = —-—+F—
s0s S0s
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