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Stiffness characterization of a
3-PPR planar parallel manipulator
with actuation compliance

Guanglei Wu, Shaoping Bai and Jørgen Kepler

Abstract

This paper investigates the stiffness of a compliant planar parallel manipulator. Instead of establishing stiffness matrix

directly for planar mechanisms, we adopt the modeling approach for spatial mechanisms, which allows us to derive two

decoupled homogeneous matrices, corresponding to the translational and rotational stiffness. This is achieved by resort-

ing to the generalized eigenvalue problem, through which the eigenscrew decomposition is implemented to yield six

screw springs. The principal stiffnesses and their directions are then identified from the eigenvalue problem of the two

separated submatrices. In addition, the influence of the nonlinear actuation compliance to the manipulator stiffness is

investigated, and the established stiffness model is experimentally verified.
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Introduction

The planar parallel manipulators (PPMs) have found
their applications in many fields. Their stiffness is one
of the important considerations in design and appli-
cations in that the stiffness decides the positioning and
orientation accuracies. In some applications, such as
the Remote Center Compliance (RCC) device,1 which
allows multi-axis movement to achieve lateral and
angular alignment between components, the conven-
tional stiffness formulation corresponding to their
mobilities cannot characterize the stiffness precisely,
thus, stiffness modeling with increased dimensions for
PPMs is desirable.

The stiffness matrix of a mechanism maps the
transformation between the translational/rotational
deformation and the external wrench applied. A
number of works on the stiffness of the compliant
PPMs can be found in the literature. Kim et al.2 ana-
lyzed the output compliance characteristics of a com-
pletely decoupled 3-RRR PPM as a Remote Center of
Compliance (RCC) device. Kock and Schumacher3

investigated a two degrees-of-freedom (2-dof) planar
manipulator with redundant actuation, allowing
adjustment towards improved overall stiffness isot-
ropy over the workspace. Similarly, Lee et al.4

proposed a method of the equal minimum and max-
imum stiffness for a 2-DOF PPM by adding redun-
dant actuation. Zhao et al.5 investigated the influence
of the external force on the stiffness performance of
planar parallel 3-RRR mechanism with flexible joints.
Besides, the stiffness of the flexure-based PPMs was
extensively investigated by several researchers.6–10 As
frequently documented, the stiffness matrix of parallel
robots is usually configuration-dependent and related
to the stiffness of joints, linkages and actuators. In
this work, these elements and the nonlinear actuation
compliance are taken into account to model the stiff-
ness matrix for PPMs.

On the analysis of the manipulator stiffness, a
problem usually encountered is that the stiffness
matrix is usually dimensionally inhomogeneous,
which does not admit a norm to evaluate the manipu-
lator stiffness. Ciblak and Lipkin11 used screw algebra
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to synthesize a linearly elastic suspension composed of
simple translational springs with a prescribed stiffness
matrix. Ding and Selig12 used a finite element model
to compute the Cartesian stiffness matrix of a coiled
spring, being a more general suspension, which leads
to a natural mechanical interpretation of the eigen-
values and eigenvectors of the stiffness matrix. Dai
and Ding13 derived compliance matrix of a three-
legged rigidly-connected platform as a congruence
transformation of the legs’ compliance matrices and
analyzed the compliance characteristics based on the
eigencompliances and eigentwist decomposition of the
compliance matrix. Kövecses and Ebrahimi14 pro-
posed a decomposition of the dynamic inertia
matrix by changing variables to make the matrix
homogeneous, which can be applied to the stiffness
matrix.15 Based on the screw theory, Angeles16 dis-
cussed decoupling and decomposition of the 6� 6
Cartesian stiffness matrix. Henceforth, this approach
will be used to investigate the stiffness properties
of PPMs.

In this paper, the Cartesian stiffness matrix of the
PPMs is modeled and analyzed by resorting the mod-
eling approach of spatial mechanisms, in combination
with consideration of actuation compliance. The stiff-
ness characteristics is analyzed and discussed by
eigenscrew decomposition and decoupling of the
Cartesian stiffness matrix, through which the princi-
pal stiffnesses and their directions are identified. This
approach was applied to a partly decoupled 3-PPR
PPM17,18 as shown in Figure 1. The influence of the
nonlinear actuation compliance was investigated and
experimentally verified.

Stiffness modeling of the PPM

A general 3-PPR PPM is illustrated in Figure 2, where
Ai, i¼ 1, 2, 3, are points on the base platform and
where Di, i¼ 1, 2, 3, are the points on the moving plat-
form (MP). Frame F b is the global coordinate system
while F p is a moving coordinate system with the origin
P located at the geometric center of the moving plat-
form and the X-axis is parallel to the segment D1D2.

The pose of the MP is described by x ¼ ½p, ��T, where
p ¼ ½x, y�T.

The stiffness model is established with the virtual-
spring approach19 based on the screw coordinates,20

the flexibility of the ith leg being represented in
Figure 3, of which the passive prismatic joint is
equivalent to a cylindrical one with the consideration
of the MP twist.

Let the MP center be the reference point, the
Cartesian stiffness matrix Ki of the ith leg is obtained
by extracting the first six-dimensional block from the
following matrix K0i, namely,

K0i ¼
Ji�ðK

i
actÞ
�1Ji

T

� þ Ji�ðK
i
�Þ
�1Ji

T

� Jiq

JiTq 03

2
4

3
5�1 ð1Þ

where Ji� and Ji� describe the displacements of the
actuated joint and the articulated joints relative to
the MP center, and Jiq takes into account the pas-
sive-joint influence on the MP motions, of which the
expressions are given in Appendix. Moreover, Ki

act

describes the actuation stiffness of the ith actuator,
and 21� 21 matrix Ki

� describes the stiffness of all
virtual springs, taking the form:

Ki
� ¼ diag Ki

g Ki
s Ki

b Ki
l

h i
ð2Þ

where Ki
g, K

i
b and Ki

sðl Þ, respectively, are the stiffness
matrices of the linear guide, bearing and the proximal
(distal) link, which take the form:

Ki
g ¼ diag k�x k�y k�z kyy kzz

� �i
g

ð3aÞ

Ki
b ¼ diag k�y k�z kyy kzz

� �i
b

ð3bÞ

Figure 2. Parameterization of a general kinematic

3-PPR PPM.

Figure 1. CAD model of an unsymmetrical 3-PPR PPM.
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Ki
sðl Þ ¼
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i

sðl Þ

ð3cÞ

where L is the link length, A is its cross-section area,
Iy(Iz), and Ix are the quadratic and polar moments of
inertia of the crosssection, and E and G are the
Young’s and shear modules, respectively. Moreover,
k�2 and k��, �2 {x, y, z}, stand for the rotational and
translational stiffnesses in the � direction, respectively.

Henceforth, the Cartesian stiffness matrix K of the
system is found by simple addition, namely,

K ¼
X3
i¼1

Ki ð4Þ

Eigenscrew decomposition of the
stiffness matrix

To characterize the manipulator stiffness at a given
configuration, the eigenscrew decomposition is
applied to the Cartesian stiffness matrix. For the prin-
cipal screws of the potential,21 the twist and the

wrench have the same line of action and the same
pitch. In essence, the principal screws are the eigen-
vectors fi, of the generalized eigenvalue problem,

Kfi ¼ li!fi ð5Þ

where ! is the 6� 6 permutation matrix defined in its
block form

! ¼
03 13
13 03

� �
ð6Þ

In screw theory, the corresponding pitch pi, unit
vector ei and position vector pi of the eigenscrew
upon which the eigenforce16 �i acted are defined as
below

�i
ei

pi � ei þ piei

� �
¼ li

gi
mi

� �
ð7Þ

where gi and mi are three-dimensional vectors in eigen-
vector fi. Thus, the eigenforce is calculated as

�i ¼ li gi
���� ð8Þ

whence, the unit vector in the eigenscrew is computed
from

ei ¼
gi

gi
���� ð9Þ

and the position vector and eigenpitch will be

pi ¼
gi � mi

gi
���� 2

ð10Þ

pi ¼
gTi mi

gi
���� 2

ð11Þ

Figure 3. A single flexible leg: (a) a PPR leg with local frames; (b) virtual-spring model, where Ac stands for the actuator, C and R for

cylindrical and revolute joints, respectively.
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The physical interpretation of stiffness matrix K

can be described by a body supported by six screw
springs with directions along their corresponding
eigenscrews. Each screw spring is defined by its
spring constant k¼ l/(2p),22 axis direction e, position
vector p and pitch p.

Decoupling of the stiffness matrix

The stiffness matrix of equation (4) is in general form

K ¼
Krr Krt

KT
rt Ktt

� �
ð12Þ

Decoupling of the Cartesian stiffness matrix is pos-
sible if and only if the 3� 3 coupling entry Krt is sin-
gular,16 namely, rank(Krt)4 2, which is achieved by
means of a similarity transformation that involves
only a shift of the origin. In general, Krt is not singular
for the spatial case, but becomes singular for planar
case when considered in 3D space.

Let the stiffness matrix under study be denoted by
½K�A when represented in a coordinate frame labeled
by A. Similarly, ½K�B stands for the same matrix in a
second frame B, under the assumption that the orien-
tation of the axes and origins of the two frames are
different. The matrix T transforms a unit screw ŝ from
B into A given by23

ŝ
� �
B
¼ T ŝ

� �
A

; T ¼
Q 03
DQ Q

� �
ð13Þ

where Q denotes the rotation matrix from the frame B
to A, while D is the cross-product matrix (CPM) of
the displacement d that carries the origin of frame B
into that of A, defined as D¼CPM(d).24 The corres-
ponding changes in axis-coordinates ŝa are done by

ŝa
� �

B
¼ ! ŝ

� �
B
¼ !T ŝ

� �
A
¼ !T!�1 ŝa

� �
A

ð14Þ

The matrices ½K�A and ½K�B are displayed below:

½K�A ¼
Krr Krt

KT
rt Ktt

� �
; ½K�B ¼

K0rr K0rt
K0Trt K0tt

� �
ð15Þ

In light of the definition equation (14), the similar-
ity transformation that relates ½K�A with ½K�B is25

½K�B ¼ !T!
�1½K�AT

�1;

!T!�1 ¼ !T! ¼
Q DQ

03 Q

� �
ð16Þ

Combining equations (15) and (16) leads to

K0rr ¼ QðKrr � KrtDÞQ
T þDQðKT

rt � KttDÞQ
T

ð17aÞ

K0rt ¼ ðQKrt þDQKttÞQ
T ð17bÞ

K0tt ¼ QKttQ
T ð17cÞ

As matrix Q can be freely chosen, to meet the
decoupling condition K0rt ¼ 03, we can let Q¼ 1,
which yields

K0rr ¼ Krr � KrtDþDðKT
rt � KttDÞ ð18aÞ

DKtt ¼ �Krt ð18bÞ

K0tt ¼ Ktt ð18cÞ

whence D can be determined from equation (18b),
being a 3� 3 skew-symmetric matrix, hence, rank
(DKtt)4 2, in accordance with Sylvester’s theorem.26

Under the assumption that Krt is singular, D is found
upon taking the axial vector24 of both sides of equa-
tion (18b), namely,

Md ¼ vectðKrtÞ; M ¼
1

2
½1trðKttÞ � Ktt� ð19Þ

where M carries unit N/m and tr(Ktt) is the trace of
Ktt. Operation vectð�Þ is the mapping from anti-screw
matrix to its corresponding vector. If M is invertible,
then d ¼M�1vectðKrtÞ; otherwise,M fails to be invert-
ible, but d can still be calculated.16

Actuator stiffness

In some developed stiffness models, actuator stiffness
is usually considered as constant when the transmis-
sion unit is mechanically locked. However, in real
applications, where actuator is powered, the actuation
stiffness may change and influence the overall stiffness
significantly. For the PPM in this work, SMAC actu-
ators are moving coil linear motors driven by electro-
magnetic force, which behaves similarly as the
compression/tension spring, hence, their stiffness
strongly influences the manipulator stiffness. The
actuator stiffness Ki

act is modeled from static-load
experiment when the actuator is powered on, for
which the experimental setup is shown in Figure 4(a).

The force–displacement curve is shown in
Figure 4(b), from which it is seen that measurements
of applied force versus extension of actuator rod do
not obey Hooke’s Law, but display as a nonlinear
softening spring. The force-displacement curve is in
this case fitted into an exponential function as

G ¼ ka�
q
a ð20Þ

where ka¼ 44.75 is the generalized actuation stiffness
with unit of N/mq, and the exponent q¼ 0.225
describes how much the stiffness changes with
force.27 A greater value of q means a greater range
of stiffness for a given range of force. Equation (20)
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becomes linear when q¼ 1. The actuator behaves
different stiffness characteristics due to the nonlinear
displacements under different external loads applied
to the actuator rod. With consideration of friction
introduced by the sliding unit and linear guide, the
actuator stiffness is expressed as

Ki
act ¼

1:1108 � 105 N=m, �a40:006mm
qka�

q�1
ai , �ai 4 0:006mm, i ¼ 1, 2, 3

�
ð21Þ

Stiffness Performance of the 3-PPR PPM

In this section, the decoupling of the stiffness matrix is
applied to the 3-PPR PPM in Figure 1. The foregoing
analysis based on screw theory is employed to find the
eigenscrews and principal stiffnesses of the Cartesian
stiffness matrix to characterize the stiffness properties.

Analysis of the stiffness matrix

The design parameters is given in Table 1 and �i¼ 0,
ri¼ 30mm. Moreover, the kinematic problem of the
PPM has been well documented in the previous
work.18 The material properties and element stiff-
nesses are listed in Tables 2 and 3, respectively.
When the manipulator is at its workspace center
with � ¼ 0, the stiffness matrix of unloaded mode is
computed as

where the blocks Krr, Krt and Ktt are given in Nm, N
and N/m, respectively. The block Ktt becomes a diag-
onal matrix due to the partly decoupled mobilities in
x- and y-axis. With external forces f ¼ ½fxy, fz�

T and/
or moments mz acting on the mobile platform, where
fxy¼ fxy[cos 	, sin 	], the deflections can be calculated
from the compliance matrix, i.e., the inverse of
matrix (22).

Solutions of the generalized eigenvalue problem. Solving
the generalized eigenvalue problem of matrix (22),
the eigenstiffnesses (eigenvalues) and their corres-
ponding eigenvectors are listed as follow

k¼ 9624:4 4759:3 2368:1 �9624:4 �4759:3 �2368:1
� �T

ð23Þ

K ¼
Krr Krt

KT
rt Ktt

� �
¼

0:0075 0:0006 0 0 0 0:0323
0:0006 0:0143 0 0 0 �0:0398

0 0 0:0008 �0:0104 0:0043 0
0 0 �0:0104 0:3457 0 0
0 0 0:0043 0 0:6595 0

0:0323 �0:0398 0 0 0 1:4229

2
6666664

3
7777775
� 105 ð22Þ

Figure 4. Static load experiment of the actuator: (a) setup, (b) force–displacement curve.

Table 1. The design parameters of the 3-PPR PPM.

i ai (mm) 	i (rad) 
i (rad)  i (rad) si (mm)

1 (�179.97, �67.86) �=2 ��=2 �=6 114

2 (179.97, �67.86) �=2 �=2 5�=6 27

3 (�34.47, 189.23) 0 ��=2 3�=2 42
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,¼ ,1 ,2

� �
; ,1¼

0:0812

0:9317

�0:3258

0:0128

0:1381

0:0022

2
666666664

0:9671

�0:1638

�0:1424

0:1288

�0:0109

�0:0313

��������������

��������������

0:0222

0:0385

0:9984

0:0315

�0:0051

0:0172

3
777777775
,

,2¼

0:0812

0:9317

0:3258

�0:0128

�0:1381

0:0022

2
666666664

0:9671

�0:1638

0:1424

�0:1288

0:0109

�0:0313

��������������

��������������

�0:0222

�0:0385

0:9984

0:0315

�0:0051

�0:0172

3
777777775

ð24Þ

whereby the six eigenforces are obtained pairwisely as

�1 ¼ ��4 ¼ 9531:5N; �2 ¼ ��5 ¼ 4717:0N;

�3 ¼ ��6 ¼ 2366:6N ð25Þ

and the associated eigenpitches being

p1 ¼ �p4 ¼ 0:1315 rad=m;

p2 ¼ �p5 ¼ 0:1332 rad=m;

p3 ¼ �p6 ¼ 0:0177 rad=m

ð26Þ

and the eigenscrews are found as

S¼ S1 S2

� �
, S1¼

0:0820

0:9408

�0:3290

0:0130

0:1394

0:0022

0:9757

�0:1653

�0:1437

0:1300

�0:0110

�0:0316

��������������

��������������

0:0223

0:0385

0:9990

0:0315

�0:0051

0:0172

2
666666664

3
777777775
,

S2¼

0:0820

0:9408

0:3290

�0:0130

�0:1394

0:0022

0:9757

�0:1653

0:1437

�0:1300

0:0110

�0:0316

��������������

��������������

�0:0223

�0:0385

0:9990

0:0315

�0:0051

�0:0172

2
666666664

3
777777775

ð27Þ

The smaller eigenforce implies that the manipula-
tor is stiffer in this direction.16 The physical interpret-
ation of stiffness matrix (22) is listed in Table 4 and
graphically shown in Figure 5.

Principal stiffnesses and directions. Apparently, the rank
of Krt in matrix (22) is equal to 2, thus, K can be
decoupled. Matrix M in equation (19) is computed as

M ¼

1:0413 0 0
0 0:8843 0
0 0 0:5027

2
4

3
5 � 105 N=m ð28Þ

Table 4. Details of the screw springs.

Spring k (N/m) e p (m) p (rad/m)

s1 36602 [0.0820, 0.9408, �0.3289]T [0.0479, �0.0044, �0.0008]T 0.1315

s2 17866 [0.9757, �0.1653, �0.1437]T [0.0036, 0.0122, 0.0108]T 0.1332

s3 66947 [0.0223, 0.0385, 0.9990]T [0.0057, 0.0311, �0.0013]T 0.0177

s4 36602 [0.0820, 0.9408, 0.3289]T [0.0479, �0.0044, �0.0008]T
�0.1315

s5 17866 [0.9757, �0.1653, 0.1437]T [0.0036, 0.0122, �0.0108]T
�0.1332

s6 66947 [�0.0223, �0.0385, 0.9990]T [0.0057, 0.0311, 0.0013]T
�0.0177

Table 2. Properties of the proximal and distal links.

E

(Gpa)

G

(Gpa) A (m2) Ix (m4) Iy (m4) Iz (m4)

Proximal 69 26 2:1 � 10�4 2:21 � 10�8 6:30 � 10�10 2:14 � 10�8

Distal 210 81 5:03 � 10�5 4:02 � 10�10 2:01 � 10�10 2:01 � 10�10

Table 3. The elements of the stiffness matrix of the linear guide and bearing.

Linear guide Linear bearing

k�x
(Nm/rad) k�y

, k�z
(Nm/rad) kyy (N/m) kzz (N/m) k�y

, k�z
(Nm/rad) kyy,kzz (N/m)

4700 1700 2:5 � 106 5:1 � 106 1010 1:996 � 106

2296 Proc IMechE Part C: J Mechanical Engineering Science 229(12)



which is invertible, consequently, d follows the simple
inversion of M

d ¼ 0:0212 0:0241 0
� �T

m ð29Þ

Following the relation D¼CPM(d), one obtains

D ¼

0 0 0:0241
0 0 �0:0212

�0:0241 0:0212 0

2
4

3
5m ð30Þ

Substituting matrix D into equations (18a) and
(18 c), K0rr and K0tt are calculated as

K0rr ¼

0:9880 �0:1776 0

�0:1776 1:6624 0

0 0 0:1935

2
64

3
75 � 103 Nm;

K0tt ¼

0:3458 0 0

0 0:6597 0

0 0 1:4229

2
64

3
75 � 105 N=m

ð31Þ

Matrix K is decoupled into two homogeneous sub-
matrices corresponding to the translational and rota-
tional stiffness, thus, by addressing the simple

eigenvalue problem, one can identify the directions
along which the max-/minimum principal stiffness
exists. Based on this, the corresponding eigenvalues
and eigenvectors of K0rr ðK

0
ttÞ, stored in arrays frr ðfttÞ

andmatrices,rr ð,ttÞ, respectively, are displayed below

It is noteworthy that the manipulator has the
largest translational stiffness but the smallest rota-
tional stiffness in the z-axis, since the resistance to
the linear deformation in this direction depends only
on the structural stiffness which is much larger than
the actuation stiffness, whereas the rotational stiffness
mainly comes from the actuator at a prescribed con-
figuration. With the partly decoupled characteristics,
the second eigenvalue in frr is approximately twice
as large as the first one and so is ftt. In addition,
the identity matrix ,tt indicates that the principal dir-
ections of translational stiffness are parallel to the
global coordinate axes regardless of the manipulator
pose.

Reference to the mobilities of the planar manipu-
lators, the principal stiffness, i.e., the third eigenvalue
in frr and the first two ones in ftt, denoted by k�, kx
and ky, respectively, should be given due attention.
The larger the eigenvalues, the stiffer the manipulator.
The eigenvectors of the force demonstrate the compli-
ant directions in the xy plane. As the stiffness analysis
plays a significant role in the manipulator design, the
decoupling of stiffness matrix can be applied in this
process, through which parameters and dimensions
are evaluated to optimize the manipulator
performance.

Actuation compliance effect on manipulator
stiffness

The actuator stiffness in equation (1) has a much more
significant influence on the overall compliance than
the structural stiffness. Thereby, the effect of struc-
tural stiffness variation due to geometry changes
may be ignored when an external wrench is applied
to the MP. When the manipulator is still at its work-
space center with � ¼ 0 but under an external wrench
we ¼ ½f

T mz�
T, where f¼ [5, 5, 20]T N and mz¼ 0.1Nm,

the actuation stiffnesses are K1
act ¼ 1:1108 � 105 N=m,

K2
act ¼ 0:0516 � 105 N=m, K3

act ¼ 0:1912 � 105 N=m,
leading to the stiffness matrix

By comparison, it is found that part of the
elements are different from matrix (22), as the
actuation stiffness can only contribute to affect
the elements corresponding to the stiffness matrix
in its planar version. Henceforth, the eigenforces,

frr ¼

0:9441

1:7063

0:1935

2
64

3
75 � 103 Nm, ,rr ¼

�0:9708 0:2400 0

�0:2400 �0:9708 0

0 0 1

2
64

3
75; ftt ¼

0:3458

0:6597

1:4229

2
64

3
75 � 105 N=m, ,tt ¼

1 0 0

0 1 0

0 0 1

2
64

3
75
ð32Þ

K ¼

0:0075 0:0006 0 0 0 0:0323
0:0006 0:0143 0 0 0 �0:0398

0 0 0:0003 �0:0042 �0:0052 0
0 0 �0:0042 0:1385 0 0
0 0 �0:0052 0 0:2954 0

0:0323 �0:0398 0 0 0 1:4229

2
6666664

3
7777775
� 105 ð33Þ

Figure 5. Physical interpretation of stiffness matrix with six

screw springs.
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eigenpitches and eigenscrews, respectively, are
found as below

�1 ¼ ��4 ¼ 6871:4N; �2 ¼ ��5 ¼ 2939:4N;

�3 ¼ ��6 ¼ 1117:7N

ð34aÞ

p1 ¼ �p4 ¼ 0:1227 rad=m;

p2 ¼ �p5 ¼ 0:2145 rad=m;

p3 ¼ �p6 ¼ 0:0097 rad=m

ð34bÞ

The corresponding physical interpretation of stiff-
ness matrix under external forces/moment is listed in
Table 5, from which it is seen that the directions of the
third pair of springs do not have obvious change com-
pared to Table 4, which are still approximately paral-
lel to the z-axis. It is noted that the magnitudes of all
the eigenforces and the spring constants become smal-
ler with the decreased diagonal elements.

Solving the eigenvalue problem based on the
decoupling of the stiffness matrix, the principal stiff-
nesses and their directions are found as

frr ¼

0:9392

1:6868

0:0505

2
64

3
75 � 103 Nm,

,rr ¼

�0:9738 0:2272 0

�0:2272 �0:9738 0

0 0 1

2
64

3
75;

ftt ¼

0:1385

0:2955

1:4229

2
64

3
75 � 105 N=m, ,tt ¼

1 0 0

0 1 0

0 0 1

2
64

3
75
ð35Þ

In comparison with the eigenvalues and eigenvec-
tors in equation (32), k�, kx and ky become much
smaller. The eigenvectors in ,rr have very small
changes while ,tt is still an identity matrix, as the
two parallel actuators influence ky, k� and the third
one only contribute to kx.

Figures 6 and 7 map the principal stiffnesses over
the workspace, which demonstrate the stiffness range
when the manipulator stays at a prescribed pose. The
map shows that the maximum values are at least 10
times higher than the minimum ones. It is found that

the rotational stiffness k� becomes higher from the left
lower region of the workspace to the right boundary.
The translational stiffness kx is constant for a given y-
coordinate and the manipulator becomes stiffer with
the increasing y-coordinate, while ky keeps constant
for a given x-coordinate, which is associated with the
partial motion decoupling of the manipulator. The
overall stiffness reveals the compliance characteristics
of the manipulator studied.

Experimental verification of the
stiffness model

In this work, a test system was built as shown in
Figure 8 for stiffness model validation. The deflection
of the robot was measured via an experimental setup
composed of a single Charge-Coupled Device (CCD)
camera with an interface18:

. DVT 554 c smart camera with 1280� 1024 pixel
resolution from Cognex28 was fixed right above
the mobile platform for pose measurements.

. INTELLECT 1.5.1, a vision software from
Cognex,29 was used to establish the communication
with the camera via data cable.

S ¼
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�0:1563
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����������������
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ð34cÞ

Table 5. Details of the screw springs under external wrench.

Spring k (N/m) e p (m) p (rad/m)

s1 28354 [�0.0506, �0.7158, 0.6965]T [0.0980, �0.0024, 0.0047]T 0.1227

s2 7010 [�0.9885, 0.1495, 0.0218]T [0.0037, 0.0221, 0.0166]T 0.2145

s3 57477 [0.0038, 0.0394, 0.9992]T [�0.0187, 0.0302, �0.0011]T 0.0097

s4 28354 [0.0506, 0.7158, 0.6965]T [0.0980, �0.0024, �0.0047]T
�0.1227

s5 7010 [0.9885, �0.1495, 0.0218]T [0.0037, 0.0221, �0.0166]T
�0.2145

s6 57477 [0.0038, 0.0394, �0.9992]T [�0.0187, 0.0302, 0.0011]T
�0.0097
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With this system, the position and orientation
measurement accuracies are 0.01mm and 0.01 deg,
respectively. Three loading modes are applied to the
mobile platform, as displayed in Figure 9: (a) planar
force; (b) pure moment; (c) vertical force.

Figure 10 illustrates the comparisons between the
analytical model and the experimental measurements,
where the deflections are calculated from matrix of
equation (22). The root-mean-square (RMS) based
differences of the orientation/positioning errors

Figure 6. The overall principal stiffness with constant-orientation � ¼ 0: (a) all the actuators at the maximum stiffness; (b) all the

actuators at the minimum stiffness.

Figure 7. The principal stiffness with constant-orientation � ¼ 30o: (a) all the actuators at the maximum stiffness; (b) all the

actuators at the minimum stiffness.
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between the calculation and measurement are 0.089�

and 0.095mm for Figure 10(a), and the differences are
0.115� and 0.075mm of Figure 10(b) together with
0.054mm of Figure 10(c). One reason causing the dif-
ferences is that the stiffness of the linear guides and
bearing are approximated from the catalogs, and
another important reason is the non-uniform friction.

Based on the comparison, it is found that the dif-
ference between the analytical model and the experi-
mental measurements is quite small and acceptable,
which means that the developed stiffness model can
effectively predict the manipulator stiffness.

Conclusions

This paper addresses the problem of the stiffness mod-
eling for complaint planar parallel manipulators with

increase modeling dimensions. This was accomplished
by taking into consideration of the actuator stiffness
and also the spatial deformation of the parallel
manipulator. With the aid of screw theory, the gen-
eralized eigenvalue problem of the stiffness matrix,
namely, the eigenscrew decomposition to compute
the eigenforce, eigenpitch and eigenscrew, is investi-
gated to interpret physical property of the stiffness
matrix. A numerical method for decoupling the
Cartesian stiffness matrix into two homogeneous sub-
matrices, corresponding to the translational and rota-
tional stiffness, is introduced. Based on decoupling of
stiffness matrix, the eigenvalue problem of the two
submatrices is studied separately to assess the
manipulator stiffness at given configurations.

The proposed approach is applied to a 3-PPR
PPM, whose actuation stiffness turns out to

Figure 8. Vision system for the deflection measurement.

Figure 9. The three loading modes for deflection measurement: (a) planar force; (b) pure moment; (c) vertical force. In the third

mode, the vertical deflection is measured by a dial indicator, to compensate the limitation of a single camera.
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be nonlinear. Using the technique of the decoupling of
stiffness matrix, the max-/minimum principal stiffness
can be qualified and the corresponding directions are
identified. The mappings of the principal stiffness over
the workspace with constant orientations are visua-
lized, which shows that the manipulator exhibits com-
pliance behavior consistent with its variable actuation
stiffness.
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Appendix

The Jacobians in equation (1) are given as

Ji� ¼
b$i�; Jiq ¼ b$iC b$il b$iDh i

;

Ji� ¼ Jig Jis Jib Jil

h i ð36Þ

with

Jig ¼
b$ig1 . . . b$ig5h i

; Jis ¼ b$is1 . . . b$is6h i
;

Jib ¼ b$ib1 . . . b$ib4h i
; Jil ¼ b$il1 . . . b$il6h i

ð37Þ

where the unit screws are given below

b$i� ¼ 0

ui

� �
, b$iC ¼ wi

ci�wi

� �
, b$il ¼ 0

wi

� �
,

b$iD ¼ k

di�k

� �
b$ig1 ¼ ui

bi� ui

� �
, b$ig2 ¼ yiB

bi� yiB

� �
, b$ig3 ¼ k

bi�k

� �
,

b$ig4 ¼ 0

yiB

� �
,b$ig5 ¼ 0

k

� �
b$is1 ¼ vi

ci� vi

� �
, b$is2 ¼ yiC

ci� yiC

� �
, b$is3 ¼ k

ci�k

� �
,

b$is4 ¼ 0

vi

� �
, b$is5 ¼ 0

yiC

� �
, b$is6 ¼ 0

k

� �
b$ib1 ¼ yiD

ci� yiD

� �
, b$ib2 ¼ k

ci�k

� �
, b$ib3 ¼ 0

yiD

� �
,

b$ib4 ¼ 0

k

� �
b$il1 ¼ wi

di�wi

� �
, b$il2 ¼ yiD

di� yiD

� �
,

b$il3 ¼b$iD,b$il4 ¼ 0

wi

� �
,b$il5 ¼ 0

yiD

� �
,b$il6 ¼ 0

k

� �
ð38Þ

where bi, ci and di are position vectors of points Bi, Ci

and Di from point P, respectively, while k is the unit
vector of z-axis, and

yiB ¼
k� ui

k� uik k
, yiC ¼

k� vi

k� vik k
, yiD ¼

k� wi

k� wik k

ð39Þ
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