
Mechanism and Machine Theory 94 (2015) 177–187

Contents lists available at ScienceDirect

Mechanism and Machine Theory

j ourna l homepage: www.e lsev ie r .com/ locate /mechmt
Coupler-curve synthesis of four-bar linkages via a
novel formulation
Shaoping Bai a, Jorge Angeles b

a Department of Mechanical and Manufacturing Engineering, Aalborg University, Denmark
b Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
a r t i c l e i n f o
E-mail addresses: shb@m-tech.aau.dk (S. Bai), angel
1 The overdeterminacy discussed here is confined to t

underdetermined problem if n b 9.

http://dx.doi.org/10.1016/j.mechmachtheory.2015.08.01
0094-114X/© 2015 Elsevier Ltd. All rights reserved.
a b s t r a c t
Article history:
Received 7 February 2015
Received in revised form 14 August 2015
Accepted 17 August 2015
Available online 5 September 2015
The coupler-curve synthesis of four-bar linkages is a fundamental problem in kinematics. Ac-
cording to theRoberts–Chebyshev theorem, three cognate linkages can generate the samecoupler
curve. While the problem of linkage synthesis for coupler-curve generation is determined, it has
been regarded as overdetermined, given that the number of coefficients in an algebraic coupler-
curve equation exceeds that of linkage parameters available. In this paper, we develop a new for-
mulation of the synthesis problem, whereby the linkage parameters are determined “exactly”,
within unavoidable roundoff error. A system of coupler-curve coefficient equations is derived,
with as many equations as unknowns. The system is thus determined, which leads to exact
solutions for the linkage parameters. A method of linkage synthesis from a known coupler-
curve equation is further developed to find the three cognate mechanisms predicted by the
Roberts–Chebyshev theorem. An example is included to demonstrate the method.
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1. Introduction

Path, function andmotion generation, classical problemsof linkage synthesis, have been extensively studied [1–5]. Given thefinite,
discrete nature of the linkage parameters, a linkage can be synthesized, in principle, to meet only a finite, discrete set of sampled data
from the given path, function or, correspondingly, motionmotivating the synthesis problem.Most works on path-generation synthe-
sis have adopted a discretization approach based on Burmester theory. By this approach, a discrete set of points, either specified
directly, or taken from a given continuous path, form the synthesis data. Linkage parameters are then found to meet a discrete set
of points from the given path. If no more than nine points are specified, exact solutions can be obtained. Synthesis with more than
nine points can only be achieved by approximate solutions obtained via optimization methods [6–12].

Quite another approach to path-generation linkage synthesis, rarely considered, is the synthesis of linkages capable of tracing a
continuous path. A scarcity of works on this problem has been reported. Blechschmidt and Uicker proposed an approach of synthesis
from the algebraic curves of the coupler points [13]. Ananthasuresh and Kota developed a two-step method [14]: (1) curve genera-
tion; and (2) parameter evaluation, the latter being conducted approximately. A major challenge in this approach lies in finding
the linkage parameters from the coupler-curve equation itself. This is essentially the problem of linkage coupler-curve synthesis, a
special but fundamental problem of path synthesis, for which no effective methods are available. The challenge of coupler-curve syn-
thesis lies in the putative overdeterminacy1 of the synthesis equations. The coupler curve equation of a four-bar linkage is a sextic of
15 terms [14]. As the design parameters are only nine, the synthesis problem appears to be overdetermined, and has been considered
as such so far [13,14].
es@cim.mcgill.ca (J. Angeles).
he synthesis aimed at generating a full coupler curve, not including synthesis with n discrete points, which is an
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Fig. 1. A four-bar linkage with revolute–revolute (RR) dyads.
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In this paper, the coupler-curve synthesis of four-bar linkages is revisited. We propose a new formulation of the synthesis of path
generation for four-bar linkages. In doing this, we show that a determined system of coupler-curve coefficient equations can be de-
rived, which allows us to find exact solutions. A related algorithm is developed, then demonstrated with a synthesis example.

2. Problem formulation

A four-bar linkage, illustrated in Fig. 1, is to visit a continuous path Γ traced by a point P of position vector r in a frame F fixed
to link BD. A local coordinate system L, fixed to the coupler link with origin at point P and its x axis parallel to AC, is also defined.
The local coordinates of points A and C are given via their position vectors: a = [−m,−h]T and c = [l3 − m, − h]T in the moving
frame L. A four-bar linkage is uniquely defined with nine linkage parameters, including: link lengths, l2 − l4; two coordinates, m
and h, defining point P in the coupler link; and the positions of the two joint centers, B(b1b2) and D(d1d2). The length l1 of the base
link is thus calculated from the coordinates of these two points.

We assume that Γ, a coupler curve of the linkage, is given as an algebraic equation in the form
2 In th
but mor
f x; yð Þ ¼
X6

i; j¼0

Pi; jx
iy j ¼ 0; iþ j ≤ 6 ð1Þ
where Pi,j is the coefficient of term xiyj, which is known for a given coupler curve. The problem consists in finding the parameters of the
linkage tracing Γ. These parameters are the entries of a nine-dimensional array of design variables:
x ¼ m;h; b1; b2;d1;d2; l2; l3; l4½ �T ð2Þ
where the link lengths are, of course, non-negative.
In the balance of this paper, the coupler-curve equation is first analyzed, which reveals some apparently elusive properties, upon

which a method of linkage synthesis is developed.

3. Coupler-curve equation

The coupler-curve equation (CCE), which is available in the literature, can be readily derived. We include here its derivation for
quick reference.2
e authors' opinion, the most elegant derivation of the CCE is given by Bricard, using isotropic coordinates [15]. Our derivation here is a bit longer than Bricard's,
e straightforward.
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Fig. 2. A RR dyad of a four-bar linkage.
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We formulate the CCE based on Burmester theory [16]. Without loss of generality, we start the synthesis with a dyad from a gen-
eral four-bar linkage, depicted in Fig. 2 at an arbitrary posture. Under the usual rigid-body assumption, the synthesis equation of the
dyad AB is readily derived for any point of position vector r on the coupler curve:
r−bð Þ þ Qak k2 ¼ l22 ð3Þ
where b is the position vector of point B in thefixed frame F, while a is that of pointA of the coupler, expressed in themoving frameL.
Moreover, Q denotes the rotation matrix carrying the coupler link from its reference to its current orientation through an angle ϕ. At
the reference position, frame L takes the same orientation as frame F .

Eq. (3) implies that the trajectory of pointA is a circle of radius l2, centered at point B. Upon expansion of Eq. (3) and simplifying the
expression thus resulting, we obtain
r−bð ÞTQaþ 1
2

r−bð ÞT r−bð Þ þ aTa−l22
h i

¼ 0 ð4Þ
Similarly, the synthesis equation for the CD dyad is obtained as
r−dð ÞTQcþ 1
2

r−dð ÞT r−dð Þ þ cTc−l24
h i

¼ 0 ð5Þ
where d is the position vector of pointD in the fixed frame F, while c is the position vector of point C of the coupler link in themoving
frame L.

Angle ϕ is a motion variable, not a linkage parameter. It is thus eliminated as described below.
We expand all terms of Eq. (4) by writing Q in the form Q = c1 + sE, in which 1 is the 2 × 2 identity matrix, while s ≡ sinϕ and

c ≡ cosϕ. Furthermore, E is the 2 × 2 rotation matrix through 90°. Hence, Eq. (4) can be written as
A1cþ B1sþ C1 ¼ 0 ð6aÞ
with coefficients
A1 ¼ rTa−bTa ð6bÞ

B1 ¼ rTEa−bTEa ð6cÞ

C1 ¼ 1
2

r−bð ÞT r−bð Þ þ aTa−l22
h i

: ð6dÞ
Likewise, the synthesis Eq. (5) for dyad CD leads to
A2cþ B2sþ C2 ¼ 0 ð6eÞ
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with
3 A pl
divisible
A2 ¼ rTc� dTc ð6fÞ

B2 ¼ rTEc−dTEc ð6gÞ

C2 ¼ 1
2

r−dð ÞT r−dð Þ þ cTc−l24
h i

: ð6hÞ
As c and s appear linearly in Eqs. (6a) and (6e), they can be solved for in terms of the coefficients of those equations:
c ¼ B1C2−C1B2

A1B2−A2B1
; s ¼ −

A1C2−A2C1

A1B2−A2B1
: ð6iÞ
Finally, substituting the above expressions into s2 + c2 = 1 yields
A1
2C2

2−2 A1C2A2C1 þ A2
2C1

2 þ B1C2A1B2−B1
2C2A2

−C1B2
2A1 þ C1B2A2B1−A1

2B2
2 þ 2 A1B2A2B1−A2

2B1
2 ¼ 0

ð7Þ
which is the equation of the coupler curve for the four-bar linkage, applicable to any point P on the coupler curve.

3.1. Final form of the CCE

The CCE Eq. (7) is a sixth-order bivariate polynomial, its general form beingwritten as Eq. (1). Some characteristics of the coupler
curve have been studied in the literature. Fromknowledge that the circularity3 of the curve is three, theCCE can be expressed as
f x; yð Þ ¼ K1 x2 þ y2
� �3 þ K2xþ K3yð Þ x2 þ y2

� �2 þ K4x
2 þ K5xyþ K6y

2
� �

x2 þ y2
� �

þ K7x
3 þ K8x

2yþ K9xy
2 þ K10y

3 þ K11x
2 þ K12xyþ K13y

2

þ K14xþ K15yþ K16 ¼ 0:

ð8Þ
This means that the coupler curve of four-bar linkages is a special case of the sextic bivariate polynomial of Eq. (1). Eq. (8) can be
derived from Eq. (7), when the latter has a circularity of three, using computer algebra.

The first six coefficients in terms of the link parameters in Fig. 1 are
K1 ¼ −
1
4
l23 ð9aÞ
K2 ¼ 1
2

2b1l
2
3 þ d1l

2
3−mb1l3 þmd1l3 þ hb2l3−hd2l3

� �
ð9bÞ

K3 ¼ 1
2

2b2l
2
3 þ d2l

2
3−mb2l3 þmd2l3−hb1l3 þ hd1l3

� �
ð9cÞ

K4 ¼ 1
2

l3
2l2

2−ml3l2
2 þ l3ml4

2 þ 3 mb1
2l3−3 hb2d1l3

�

−mb1d1l3−4 b1d1l3
2−b2

2l3
2 þmb2

2l3 þ 2 hd1d2l3

−3 b1
2l3

2 þ 3 hb1d2l3−mb2d2l3 þ h2b1d1−2 hb1b2l3

þh2b2d2 þm2b1d1−2 d1
2l3mþm2b2d2 þm2l3

2−l3
3mþ l3

2h2
�

−
1
4

b1
2h2 þ b1

2m2 þ b2
2h2 þ b2

2m2 þ d2
2m2 þ d2

2l3
2

�

þ d2
2h2 þ d1

2m2 þ d1
2l3

2 þ d1
2h2

�

ð9dÞ
anar curve in the x–y plane defined by F(x, y)= Fn+ Fn− 1+…+ F1+ F0=0,where each Fi is homogeneous of degree i in (x,y), is circular if andonly if any Fn is
by x2 + y2. The circularity of a curve is the highest degree of (x2 + y2) that is contained in the curve equation.



4 In f

181S. Bai, J. Angeles / Mechanism and Machine Theory 94 (2015) 177–187
K5 ¼ hb1
2l3−hb2

2l3−hd1
2l3 þ hd2

2l3 þ 2 mb1b2l3

−2 d1md2l3−2 b1b2l3
2−2 b1d2l3

2−2 b2d1l3
2

ð9eÞ

K6 ¼ 1
2

l3
2l2

2−ml3l2
2 þ l3ml4

2 þmb1
2l3−3 hb2d1l3

�

−mb1d1l3−4 b2d2l3
2−3 b2

2l3
2 þ 3mb2

2l3−2 hd1d2l3
−b1

2l3
2 þ 3 hb1d2l3−mb2d2l3 þ h2b1d1 þ 2 hb1b2l3

þ h2b2d2 þm2b1d1−2 d2
2l3mþm2b2d2 þm2l3

2−l3
3mþ l3

2h2
�

−
1
4

b1
2h2 þ b1

2m2 þ b2
2h2 þ b2

2m2 þ d2
2m2 þ d2

2l3
2

�

þ d2
2h2 þ d1

2m2 þ d1
2l3

2 þ d1
2h2

�
:

ð9fÞ
The remaining coefficients, extremely lengthy expressions, are not included here; they are available at the first author's website.
The coefficients of Eq. (8) can be expressed in a convenient form. To this end, we rewrite the equation by introducing coefficients

ki = Ki + 1/K1, i = 1,…, 15, as K1 ≠ 0, which yields a bivariate polynomial of exactly sixth degree:
f x; yð Þ ¼ x2 þ y2
� �3 þ k1xþ k2yð Þ x2 þ y2

� �2 þ k3x
2 þ k4xyþ k5y

2
� �

x2 þ y2
� �

þ k6x
3 þ k7x

2yþ k8xy
2 þ k9y

3 þ k10x
2 þ k11xyþ k12y

2

þ k13xþ k14yþ k15 ¼ 0:

ð10Þ
In the above equation, all coefficients are functions of the nine design variables of array x, defined in Eq. (2). In total, we have 15
coefficients {ki}115, all functions of nine independent variables that are to be found in a synthesis problem. This result tallies with a clas-
sical property of planar four-bar linkages: one of its coupler-link points—referred to as coupler points—can visit up to nine given points
in the plane [17].

4. A determined system of coefficient equations

In coupler-curve synthesis, Eq. (10), comprising 15 coefficients, is assumed to be given. On the other hand, the linkage is defined by
only nine parameters. For this reason, the synthesis problem has been considered overdetermined in the literature [14].4 Below we
show that the problem is determined.

We recall that K1 = − l3
2/4, and introduce a parameter
r ¼ l3=2 ð11Þ
which leads to
ki ¼ −Kiþ1 xð Þ=r2; i ¼ 1;…;15: ð12Þ
Substituting l3 = 2r into all coefficients ki yields new coefficient expressions in terms of l2,l4,m,h and the coordinates of the base
points (b1,b2)(d1,d2), along with parameter r, thereby ending up with exactly nine unknowns to be found.

Further analysis on the coefficient functions reveals interesting properties:

(1) Coefficients k1,k2 and k4 are independent of l2 and l4
(2) Coefficients k3 and k5 are linear in l2

2 and l4
2;moreover, the coefficient of l22 in k3 is identical to its coefficient in k5. The same holds

for the term l4
2

(3) Coefficient pairs (k6,k8) and (k7,k9) exhibit the same features as the pair (k3,k5)
(4) Coefficients k10,…,k15 contain terms including l2

4, l22l42, l44, l22, l42 only.

These properties allowus to build a systemof equationswith a reduced number of unknowns, namely, a systemof seven equations
with seven unknowns, through algebraic manipulations. In this vein, a seven-dimensional array of design variables is defined
as
y ¼ r;m;h; b1; b2;d1; d2½ �T : ð13Þ
act, the overdeterminacy is not explicitly mentioned, but treated as such.
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With any given algebraic equation of a four-bar linkage coupler curve, a system of coefficient equations with all nine design var-
iables can be established:
ki xð Þ−k�i ¼ 0; i ¼ 1;…;15 ð14Þ
where {ki⁎}115 are the known coefficients of the given coupler curve.
Note that three coefficient functions k1,k2 and k4 are independent of l2 and l4. They can be expressed in terms of the seven-

dimensional array y, defined above, as
kj yð Þ−k�j ¼ 0; j ¼ 1;2;4 ð15aÞ
which yields the first three equations in y alone.
Variables l2 and l4 can be eliminated from the other coefficient equations. This is done by subtracting one from the other in each

pair of the coefficient equations of (k3,k5), (k6,k8) and (k7,k9), which leads to three new equations:
k3−k5− k�3−k�5
� � ¼ 0 ð15bÞ
k6−k8− k�6−k�8
� � ¼ 0 ð15cÞ

k7−k9− k�7−k�9
� � ¼ 0 ð15dÞ
thereby obtaining three additional equations in y alone, for a total of six such equations.
The six remaining coefficients k10, …, k15 contain terms in l2

4, l22l42, l44, l22, l42 only. These equations can be written as:
ti;1l
4
2 þ ti;2l

2
2l

2
4 þ ti;3l

4
4 þ ti;4l

2
2 þ ti;5l

2
4 þ ti;6 ¼ 0; i ¼ 1;…;6 ð15eÞ
where ti,j, j=1,…, 6, are parametric coefficients in terms of y, obtained from the (i+9)th equation of (14) for the terms in the above
equation. Eq. (15e) can be cast in linear homogenous form, namely,
Tq ¼ 0 ð15fÞ
where q=[l24, l22l42, l44, l22, l42, 1]T, and T is a 6 × 6matrix whose entries are the ordered array of the coefficients of the components of q, as
appearing in Eq. (15e). These entries are functions of y alone. Since q ≠ 0, Eq. (15f) implies
g yð Þ ¼ det Tð Þ ¼ 0 ð15gÞ
which completes, with Eqs. (15a)–(15d) and (15g), a systemof seven coupler-curve coefficient equations in the seven unknowns of y.
Upon solving for y from the foregoing seven-dimensional system, l2 and l4 are the only remaining unknowns, which can be deter-
mined utilizing properties (2) and (3) listed above, thereby finding all unknowns.

From the above formulation, we draw an important result:
If the coupler curve equation of a four-bar linkage is known, a determined system of coefficient equations can be established, whose
solutions yield the complete set of the parameters defining the linkage.
To the authors' knowledge, this is the first time that the determinacy of the synthesis problem is shown. For decades, researchers
treated the problem as overdetermined, even if they were aware of the existence of three cognate linkages for one coupler curve. The
problem is, in fact, determined.

4.1. Linkage synthesis

The determined problem formulated above leads to solutions for exact synthesis. A possible method to solve this problem is con-
tinuation [18]. However, the high-order multivariate polynomial Eq. (15g), which amounts to 24 with our formulation, implies a big
numerical problem for the equation solver. In this light, we propose here an alternative method to solve the synthesis equations, in
which a small system of lower Bezout number [19] is solved.

Our method is iterative, with r, defined in Eq. (11), playing a key role in reducing the algebraic complexity, which is measured in
terms of the Bezout number at hand. For each given value of r, Eqs. (15a)–(15d)make up a system of six equations in six unknowns, a
smaller system with low computational complexity, for which the solutions of the other unknowns in y are readily found. These so-
lutions are then substituted back into two coefficient equations, for example, k5 and k6, to find corresponding solutions for l2 and l4.
These solutions are then substituted into the remaining equations, while recording the rms error in meeting these equations. The so-
lution with a minimum rms error is chosen as a solution linkage.
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Note that there are multiple real solutions for each r; we thus take theminimum,whichmeans, e=min{si}1n, where {si}1n is the set
of all rms values for n real solutions.

Based on this approach, an algorithm is developed for the synthesis problem from a given coupler-curve equation:

1. Start the synthesis with a coupler curve in the formof Eq. (10). The equation needs to be normalized tomonic form, i.e., to a form in
which the coefficient of the term (x2 + y2)3 is unity.

2. Identify coefficients ki⁎ from the coupler curve equation, as defined in Eq. (14).
3. Define a suitable range of r, then discretize r with a “reasonable” resolution.
4. Calculate residuals with each discrete value of r, following the steps below:

(a) Solve for m, h, b1, b2, d1, d2 from Eqs. (15a)–(15d); multiple real solutions are obtained.
(b) For each solution of Step 4a, find corresponding values of l2 and l4 from two coefficient Eq. (14), for example, k5 and k6, which

are linear in l2
2 and l4

2 and lead to unique solutions of both parameters.
Fig. 4. Coupler curve with two circuits.



Fig. 5. Plot of error as a function of r.
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(c) Calculate the rms error of all six Eq. (15e) for all solutions. The maximum error is recorded, along with the corresponding
solutions.

5. Display the error plot and identify visually all minima over the entire plot.
6. Go to Step 3 for a higher resolution around a minimum candidate until this minimum is identified within an acceptable accuracy.
7. Determine all sets of solutions for all minima. Normally, three minima can be expected to yield three sets of solutions, which cor-

respond to the three cognate linkages.

The algorithm is summarized in the diagram shown in Fig. 3.
The proposedmethod is able to reduce the numerical complexity significantly. The small system of Eqs. (15a)–(15d) contains 2nd,

2nd, 3rd, 3rd, 4th, 4th-ordermulti-variable polynomials. The Bezout number of the smaller system is equal to 576, much smaller than
the larger system including (15 g)with a Bezout number of 13,824 (=576× 24). Themethod can thus readily yield solutions by com-
bining numerical and graphical techniques.

5. Example

We include an example to show the effectiveness of themethod. A coupler curve is given via its sextic equation in the form
f x; yð Þ ¼ x6 þ 3:0 x4y2 þ 3:0 x2y4 þ y6 þ 0:05 x5 þ 0:2 x4yþ 0:1 x3y2

þ0:4 x2y3 þ 0:05 xy4 þ 0:2 y5−0:109375 x4 þ 0:18 x3y−0:13875 x2y2

þ0:18 xy3−0:029375 y4 þ 0:00875 x3−0:004375 x2y−0:01525 xy2

−0:044375 y3 þ 0:0107375 x2 þ 0:001425 xyþ 0:00214375 y2

þ0:0008525 xþ 0:00107375 y−0:0000479375025 ¼ 0

ð16Þ
as displayed in Fig. 4, which has two circuits [20].
Using the foregoingmethod, the error curve for a range of r values is obtained, as shown in Fig. 5. In the figure, one point, r= 0.20,

appears as a minimizer. Two other minimizers can be found by zooming-in around points r= 0.15 and r= 0.03, as shown in Fig. 6.
Two localminima, r= 0.034 and r= 0.147, are visually obtained. If higher precision is needed,we can always further zoom-in around
these points, i.e., to display the e-r plot curve in a short range with a higher resolution.
(a) (b)

Fig. 6. Zoomed-in views of the error plot around two points, r = 0.03 and r = 0.15.



Table 1
Linkage synthesis results for the example (units: m).

No. r m h [b1, b2] [d1, d2] l2 l3 l4 rms error

1 0.147 0.3136 0.1568 0.2, − 0.2 − 0.025, 0.1 0.3355 0.294 0.1254 5.40 × 10−7

2 0.147 − 0.0196 − 0.1568 − 0.025, 0.1 0.2, − 0.2 0.1254 0.294 0.3356 5.40 × 10−7

3 0.2 0.1 0.15 − 0.2, 0 0.2, − 0.2 0.15 0.4 0.35 0.0
4 0.2 0.3 − 0.15 0.2, − 0.2 − 0.2, 0 0.35 0.4 0.15 0.0
5 0.034 0.083 − 0.125 − 0.2, 0 − 0.025, 0.1 0.180 0.068 0.157 5.71 × 10−8

6 0.034 − 0.015 0.125 − 0.025, 0.1 − 0.2, 0 0.157 0.068 0.180 5.71 × 10−8
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The method leads to a small system of six equations in six unknowns for any given value of r. As an example, for r = 0.147, the
equations are
hb2−hd2−mb1 þmd1 þ 0:588 b1 þ 0:294 d1 þ 0:00735 ¼ 0 ð17aÞ
−hb1 þ hd1−mb2 þmd2 þ 0:588 b2 þ 0:294 d2 þ 0:02940 ¼ 0 ð17bÞ

2 hb1
2−2 hb2

2−2 hd1
2 þ 2 hd2

2 þ 4 mb1b2−4md1d2
−1:176 b1b2−1:176 b1d2−1:176 b2d1 þ 0:02646 ¼ 0

ð17cÞ

−1:176b2d2−2md22−2md21 þ 2mdþ 1:176b1d1 þ 2md21
−4 hd1d2 þ 4 hb1b2 þ 0:588 b1

2−0:588 b2
2 þ 0:01176 ¼ 0

ð17dÞ

2:352 b1b2d2−1:176 b1
2d1 þ 1:176 b2

2d1 þ 8 hb1d1d2
−8 hb1b2d1−8mb1b2d2 þ 8mb2d1d2−4 hb1

2d2 þ 4 hb2
2d2 þ 4mb1

2d1
−4mb1d1

2 þ 4mb1d2
2−4mb2

2d1 þ 4 hb2d1
2−4 hb2d2

2−0:003528 ¼ 0

ð17eÞ

−1:176 b1
2d2 þ 1:176 b2

2d2 þ 8 mb1b2d1−8 mb1d1d2
þ8 hb2d1d2−8 hb1b2d2−2:352 b1b2d1−4 mb2d1

2

þ4 hb1
2d1−4 hb2

2d1 þ 4mb1
2d2−4mb2

2d2
þ4mb2d2

2−4 hb1d1
2 þ 4 hb1d2

2−0:00588 ¼ 0:

ð17fÞ
The above system of equations yields six sets of real solutions. By substituting them into the coefficient equations of k5 and k6,
which are linear in l2

2 and l4
2, values of l2 and l4 are further obtained. As l22 and l4

2 have to be positive, in the given example, only two
sets of real solutions are obtained for parameters l2 and l4. They are the solutions for the given r.

The design parameters are then obtained, as listed in Table 1, along with theminimum rms errors. For r=0.2, the rms error van-
ishes within the numerical resolution of 20 digits in this work, which shows the validity of the determined system of synthesis equa-
tions to yield exact solutions. For each value of r, two sets of solutions with minimum rms error can be found. While the solutions are
different, both solutions generate the same linkage. This can be readily explained, as the two dyads BA andDC can be swapped. In total,
(a) (b) (c)

Fig. 7. Three cognate linkages visiting the first circuit of the coupler curve.



(a) (b) (c)

Fig. 8. Three cognate linkages visiting the second circuit of the coupler curve.
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weobtain three linkages,which are the cognate linkages anticipated by the Roberts–Chebyshev Theorem [21]. Fig. 7 displays the three
linkages, which visit the first circuit of the coupler curve. In Fig. 8, the cognate linkages visiting the second circuit of the coupler curve
are displayed.

6. Conclusions

Linkage synthesis for path generation was studied with focus on the coupler curves of four-bar linkages. The problem of synthesis
from the algebraic equation of the coupler curve was addressed. We derived a determined system of coefficient equations.

The contributions reported here are summarized below:

• We showed that the system of coefficient equations in the nine linkage parameters is determined. This is achieved based on the
analysis of the curve coefficients and proper algebraic manipulation.

• We developed a newmethod of synthesis in combining a numerical methodwith graphics tools, which allows us to solve the prob-
lemwith a smaller system of equations of lower complexity. Themethod, combining a graphic tool in error displaying, yields direct-
ly and simultaneously synthesis solutions of the three cognate linkages. The solution method based on the parameter r makes it
possible to solve the synthesis problem graphically by means of error plots; with which the three cognate-linkage solutions are
readily identified. To the authors' knowledge, no other method allows for an effective, thorough synthesis.

Thiswork sheds light on a fundamental issue in linkage synthesis: the determinacy of the coupler-curve coefficient equations leads
to exact, rather than approximate, solutions for the synthesis of a continuous coupler curve. In this work, an iterative algorithm, with
the parameter r as argument, is developed.More elegant and efficient algorithms can be obtained based on our formulation, but these
lie outside of the scope of the paper. Moreover, this result can be extended to other types of linkages, including six-bar, spherical and
spatial linkages.

The method of synthesis from the coupler curve can be further developed for the synthesis with finitely separated positions, in
which a discrete set of n N 9 points is prescribed for approximate solutions. To this end, the prescribed points have to fit into a
tricircular sextic coupler curve. Once this sextic has been found, our formulation takes over. The challenge to fit the n given points
to the most likely coupler curve is an open problem, to be addressed in future studies.
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