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The unified formulation of dimensional synthesis of Stephenson linkages for motion gen-
eration is the subject of this paper. Burmester theory is applied to the six-bar linkage,
which leads to a unified formulation applicable for all three types of Stephenson linkages.
This is made possible by virtue of parameterized position vectors, which simplify the for-
mulation of synthesis equations. A design example is included to demonstrate the applica-
tion of the method developed. [DOI: 10.1115/1.4032701]

Keywords: six-bar linkage motion synthesis, Stephenson linkages, uniform synthesis
equations, synthesis with incomplete data set

1 Introduction

A six-bar linkage as an one degrees-of-freedom mechanism can
be used for motion generation, the same capability as four-bar
linkages. Compared with the latter, the six-bar linkages in general
offer a high synthesis flexibility. This means that a six-bar linkage
can be designed with constraints on link dimensions and pivoting
locations [1].

Some methods of synthesis of six-bar linkages are available in
literatures. An early work on six-bar linkage synthesis can be
found in Ref. [2], in which three mechanisms, a Watt linkage and
two inversions of the Stephenson linkage, were considered.
Design equations for Watt I and Stephenson I, II, and III path gen-
erators can be found in Ref. [3], which were obtained by extension
of synthesis of a planar four-bar mechanism. A method of six-bar
linkage synthesis was developed by Soh and McCarthy, where
they considered the linkages as constrained 3R chains [4]. Many
works were also reported in literatures on the solving of synthesis
equations. An optimum synthesis method for six-bar linkages
using differential evolution was reported in Ref. [5]. Dimensional
synthesis of six-bar linkages was studied for a symmetrical Watt
mechanism in Ref. [6]. An approach of synthesis by adaptive fit-
ting was studied in Ref. [7]. Path synthesis of six-bar linkage by
applying genetic algorithms was studied in Ref. [8]. Application
of differential evolution algorithms in the design of six-bar link-
ages for path generation can be found in Ref. [9]. Function gener-
ation with a large number of separated precision points was
studied in Ref. [10]. Moreover, problem of dimensional synthesis
of Stephenson-II function generators without order, circuit, and
branch defects was addressed in Ref. [11]. Mirth and Chase devel-
oped a method of circuit rectification for four-point precision syn-
thesis of Stephenson six-bar linkages [12]. Ting and Dou studied
the rotatability of any Stephenson six-bar linkage and developed
an algorithm to identify its branch condition [13].

The subject of this study is the motion generation synthesis of
the Stephenson linkages. A Stephenson linkage comprises two ter-
nary links that are connected by binary links. Depending on the
grounded link, either one of the two ternary links or a binary link,
the Stephenson linkages are classified as three types, namely,
Stephenson-I, II, and III linkages. The Stephenson linkages have
two kinematic loops, the number of links in each loop varying
with the linkage type. In most reported works, synthesis equations
were formulated on closure equations of loops [14]. As the loop-
closure equations depend on the topology of the linkages, the

formulations have to be developed separately for each of the three
types of Stephenson linkages. A unified formulation for Stephen-
son linkages is desirable.

In this paper, the dimensional synthesis of Stephenson linkages
with a unified formulation is studied. Burmester theory is applied
to the six-bar linkage, which leads to a unified formulation appli-
cable for all three types of Stephenson linkages. A method of
coordinate parameterization is developed for ternary links, which
simplifies the formulation of synthesis equations. The method is
demonstrated with a design example.

2 Problem Formulation

We start the formulation with the Burmester theory. The theory
has been extensively studied, mainly for four-bar linkages includ-
ing both planar [15,16] and spherical four-bar linkages [17,18]. In
this work, we extend the classic Burmester problem from the
four-bar linkage to the six-bar linkage. The Burmester problem in
this context reads: A rigid body, as shown in Fig. 1, is to be
guided through a discrete set of m poses, given by frj; wjg

m
0 ,

where rj is the position vector of a landmark point G of the body
at the jth pose and wj is the corresponding angle that a line of the
body makes with a line of the frame. The problem consists in find-
ing the joint centers A and B, a.k.a. the circlepoint and the

Fig. 1 A Stephenson-III linkage. Three dyads, namely, dyads
AB, CD, and EF are to be synthesized.
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centerpoint, which define the BA dyad. Dyads DC and FE are
determined likewise.

The problem at hand consists of finding the three
revolute–revolute (RR) dyads to construct a six-bar linkage able
to visit a set of prescribed poses of link GE. The linkage in Fig. 1
is of the Stephenson-III type, which is studied first. The other two
will be considered in Sec. 4.

For the linkage synthesis as illustrated above, the origin of the
coordinate system is taken at point G. The unknowns are the coor-
dinates of points A;B;…;F, expressed by vectors a;b;…; f. For a
moving point, a subscript is attached to indicate the pose number.
Moreover, we let Qj and Rj, j ¼ 1;…;m be the rotation matrices
of links AG and GE, respectively, with Q0 ¼ R0 ¼ 1.

3 Synthesis of Stephenson-III Linkage

Without loss of generality, we start the synthesis with a single
RR dyad, as shown in Fig. 2. Under the usual rigid-body assump-
tion, the synthesis equation is readily derived

jj ðrj � bÞ þQja0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
aj�b

jj2 ¼ jja0 � bjj2; for j ¼ 1;…;m (1)

where a0 and b are the position vectors of points A0 and B, the
design parameters of the linkage. Qj denotes the rotation matrix
carrying link AG from pose 0 to pose j by an angle /j ¼ hj � h0,
as demonstrated in Fig. 3

Equation (1) is the vector form of the Burmester theory, which
implies that the trajectory of point A is a circle of radius
r ¼ jja0 � bjj, centered at point B.

Upon expansion of Eq. (1) and simplification, we obtain

bT 1�Qj

� �
a0 þ rT

j Qja0 � rT
j bþ

rT
j rj

2
¼ 0; j ¼ 1;…;m (2)

which are the synthesis equations that can be used to compute the
design parameters, namely, a0 and b. The equation contains four
variables, which are the coordinates of points A0 and B. The dyad
admits exact solutions for at most five poses (m¼ 4), a well-
known result [19].

Likewise, the synthesis equations for the RR dyad CD in
Fig. 1 are

dT 1�Qj

� �
c0 þ rT

j Qjc0 � rT
j dþ 1

2
rT

j rj ¼ 0; j ¼ 1;…;m (3)

while the synthesis equations for the RR dyad EF are

fT 1� Rjð Þe0 þ rT
j Rje0 � rT

j f þ 1

2
rT

j rj ¼ 0; j ¼ 1;…;m (4)

where Rj denotes the orientation matrix of an angle wj for the link
GE, as shown in Fig. 1.

Equations (2)–(4) compose the set of synthesis equations for
the Stephenson-III linkage, where variables include coordinates of
points A0, B, C0, D, E0, F, and orientation variable /j. The latter is
a configuration-dependent variable, which is desirably eliminated.

3.1 Elimination of Motion Variables. The orientation angle
/j of link AG is an intermediate motion variable that is desirably
eliminated. This can be accomplished by utilizing synthesis equa-
tions of dyads AB and CD.

To begin with, all terms of Eq. (2) are expressed by writing Qj
in the form Qj ¼ cj1þ sjE, in which sj � sin /j and cj � cos /j.
Moreover, matrix 1 is the 2� 2 identity matrix, while E is the ma-
trix of rotation through an angle of 90 deg. Hence,

bTð1�QjÞa0 ¼ bTð1� cj1� sjEÞa0

¼ bTa0 � cjb
Ta0 � sjb

TEa0 (5a)

rT
j Qja0 ¼ rT

j ðcj1þ sjEÞa0

¼ cjr
T
j a0 þ sjr

T
j Ea0 (5b)

Equation (2) can be written for dyad AB in an abbreviated form

A1cj þ B1sj þ C1 ¼ 0 (6a)

with coefficients defined as

A1 ¼ rT
j a0 � bTa0 (6b)

B1 ¼ rT
j Ea0 � bTEa0 (6c)

C1 ¼ bTa0 � rT
j bþ rT

j rj=2 (6d)

Likewise, the synthesis equation for dyad CD leads to

A2cj þ B2sj þ C2 ¼ 0 (7a)Fig. 2 A RR dyad

Fig. 3 Two separated poses of link AG
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with

A2 ¼ rT
j c0 � dTc0 (7b)

B2 ¼ rT
j Ec0 � dTEc0 (7c)

C2 ¼ dTc0 � rT
j dþ rT

j rj=2 (7d)

Equations (6a) and (7a) yield

cj ¼
B1C2 � C1B2

A1B2 � A2B1

; sj ¼ �
A1C2 � A2C1

A1B2 � A2B1

(8)

Finally, substituting the above expressions for cj and sj into the
identity s2

j þ c2
j ¼ 1 yields

A2
1C2

2 � 2 A1C2A2C1 þ A2
2C2

1 þ B1C2A1B2 � B2
1C2A2

� C1B2
2A1 þ C1B2A2B1 � A2

1B2
2 þ 2 A1B2A2B1

� A2
2B2

1 ¼ 0 (9)

which is the equation for the four-bar linkage ABCD applicable to
pose j. In the equation, the coefficients Ai;Bi;Ci; i ¼ 1; 2 are
configuration-dependent, but free of /j. It is seen that the equa-
tions are dependent only on the displacements, but not on the ori-
entations. In this light, it is obvious that the problem for dyad
synthesis is converted into one of the path generations, rather than
one of the motion generations. On the other hand, the synthesis of
dyad EF is still a problem of rigid-body motion guidance.

4 Extension to Stephenson I and II Linkages

The same approach is further applied to the other two types of
Stephenson linkages, as described presently.

4.1 Stephenson-II Linkage. The Stephenson-II mechanism,
as shown in Fig. 4, can be constructed by two dyads AB and EF,
together with a third dyad CD which connects links AB and EG.
For dyads AB and EF, the Burmester equation can be directly
applied, which leads to

bT 1�Qj

� �
a0 þ rT

j Qja0 � rT
j bþ

rT
j rj

2
¼ 0 ; j ¼ 1;…;m (10)

fT 1� Rjð Þe0 þ rT
j Rje0 � rT

j f þ 1

2
rT

j rj ¼ 0; j ¼ 1;…;m (11)

where Qj and Rj are the rotation matrices for links AG and EG,
respectively.

Link CD provides additional kinematic constraints to the kine-
matic chain BAGEF to yield 1DOF mechanism. For link CD, the
equation below applies

jjðcj � djjj2 ¼ jjc0 � d0jj2; for j ¼ 1;…;m (12)

where dj ¼ rj þ Rjd0.
The coordinate vector of point C, cj, at the jth pose, could not

be expressed simply in the same way as point D, as the orientation
of link AB is unknown. However, since point C is on the same
rigid body as AB, its coordinates can be parameterized in terms of
those of A and B, as described in the section below.

4.2 Parameterized Coordinates. The parameterized coordi-
nates are applicable to ternary links, for which a point on the link
can be obtained by linear combination of any other two points.
We take the ternary link ABC to describe the parameterized coor-
dinates. Assuming the coordinates of points A and B are known,
the position vector C can be expressed as

cj ¼ bþ auj þ bvj (13)

where uj and vj are orthogonal vectors attached to link ABC,
which compose a basis of R2 space. Both vectors are not neces-
sarily unit vectors. Moreover, a and b are dimensionless parame-
ters. Let

uj ¼ aj � b; vj ¼ Eðaj � bÞ (14)

Equation (13) becomes

cj ¼ bþ aðaj � bÞ þ bEðaj � bÞ (15)

that is

cj ¼ ða1þ bEÞaj þ ½ð1� aÞ1� bE�b (16)

which is expressed in a compact form as

cj ¼Maj þ Nb (17)

with

M ¼ a1þ bE; N ¼ ð1� aÞ1� bE (18)

Obviously

N ¼ 1�M (19)

Note that aj ¼ rj þQja0, and hence

cj ¼Mðrj þQja0Þ þ Nb (20)

that is

cj ¼MQja0 þMrj þ Nb (21)

In this way, the position vector C is expressed as a linear combi-
nation of the position vectors of two other points on the same
body. The two points are a circularpoint and a centerpoint, respec-
tively. The parameterized position vectors simplify significantly
the equation of constraints.

In the formulations of synthesis by loop-closure equations, the
coordinates are expressed as a function of the rotation angle of a
driving link. As the rotation angle is configuration-dependent,
such an approach leads to as many intermediate (additional) varia-
bles as the number of prescribed configurations. Taking the
five-pose synthesis as an example, the synthesis equation by

Fig. 4 The Stephenson-II linkage, where dyads AB, CD, and EF
are to be synthesized
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loop-closure equations requires using five rotation angles of the
crank as intermediate variables. As the newly introduced formula-
tion of parameterized coordinates needs only two parameters,
namely, a, b, the new formulation is thus more concise.

It can be shown that the matrices M and N are isotropic, as they
obey

MTM ¼ ða2 þ b2Þ1; NTN ¼ ðð1� aÞ2 þ b2Þ1 (22)

Moreover

MTN ¼ ða� a2 � b2Þ1� bE (23)

NTM ¼ ða� a2 � b2Þ1þ bE (24)

4.3 Synthesis Equations for the Stephenson-II Linkage. With
the introduction of parameterized position vector of point C,
Eq. (12) is now rewritten as

jjMQja0 þMrj þ Nb� ðrj þ Rjd0Þjj2 ¼ jjMa0 þ Nb� d0jj2;
for j ¼ 1;…;m (25)

Expanding and simplifying the equation yield

ðMQja0ÞT½Nðb� rjÞ � Rjd0� � ½Nðb� rjÞ�TRjd0 � ðNbÞTNrj

�ðMa0ÞTNbþ ðMa0ÞTd0 þ ðNbÞTd0 þ ðNrjÞTðNrjÞ=2 ¼ 0

(26)

Note that Eq. (19) is used here in derivation. Substituting Qj ¼
cj1þ sjE into Eq. (26) leads to

A2cj þ B2sj þ C2 ¼ 0 (27a)

with coefficients

A2 ¼ ðMa0ÞT½Nðb� rjÞ � Rjd0� (27b)

B2 ¼ ðMEa0ÞT½Nðb� rjÞ � Rjd0� (27c)

C2 ¼� ½Nðb� rjÞ�TRjd0 � ðNbÞTNrj

�ðMa0ÞTNbþ ðMa0ÞTd0 þ ðNbÞTd0 þ ðNrjÞTðNrjÞ=2

(27d)

which can be further expended as

C2 ¼� ½Nðb� rjÞ�TRjd0 � ðMa0ÞTNbþ ðMa0ÞTd0 þ ðNbÞTd0

þðð1� aÞ2 þ b2Þð�rT
j bþ rT

j rj=2Þ (28)

which has a unified form with that of the Stephenson-III linkage.
Equations (4), (6a), and (27a) compose the system of synthesis
equations for the Stephenson-II linkage.

4.4 Stephenson-I Linkage. Compared with the Stephenson-
II, the Stephenson-I linkage, shown in Fig. 5, is different only at
joint D, which is located on the rotational link EF, rather than on
the floating link EG. The position vector of point D needs to be
parameterized too. This can be done similar to the Stephenson-II
linkage. To this end, let

dj ¼ Uej þ Vf (29)

with

U ¼ l1þ �E; V ¼ ð1� lÞ1� �E (30)

where l and � are dimensionless parameters.
Substituting Eqs. (17) and (29) into Eq. (12) leads to

jjMQja0 þMrj þ Nb� ðURje0 þ Urj þ VfÞjj2

¼ jjMa0 þ Nb� Ue0 � Vfjj2 (31)

Equation (31), after expanding and simplifying, has the same
form as Eq. (27a), with coefficients expressed as

A2 ¼ ðMa0ÞTðPrj þ Nb� URje0 � VfÞ (32a)

B2 ¼ ðMEa0ÞTðPrj þ Nb� URje0 � VfÞ (32b)

C2¼ðNb�URje0�VfÞTðPrjÞ�ðMa0ÞTðNb�Ue0�VfÞ
�ðVfÞTUð1�RjÞe0þðNbÞTUð1�RjÞe0

þðða�lÞ2þðb��Þ2ÞrT
j rj=2 (32c)

where P ¼M� U.
Equations (4), (6a), and (27a) with coefficients A2;B2;C2

defined above compose the system of synthesis equations for the
Stephenson-I linkage.

Fig. 5 The Stephenson-I linkage, where dyads AB, CD, and EF
are to be synthesized

Table 1 Five poses for the example

j rj (mm) wj

0 ½0; 0�T 0
1 ½�92:0;�10:0�T 9:2 deg
2 ½�195:0;�35:0�T 18:8deg
3 ½�336:0;�106:5�T 32:2deg
4 ½�469:4;�344:8�T 58:9deg
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So far, we have formulated a unified system of synthesis equa-
tions for the three types of Stephenson linkages. With the unified
formulation, the three types of Stephenson linkages can be synthe-
sized with the standard formulation as Eqs. (4), (6a), and (7a),
where only coefficients A2;B2;C2 need to change accordingly, as
summarized in Appendix.

The new formulation offers some advantages over the formula-
tion with loop-closure equations. First, the formulation treats
always three dyads, AB, CD, and EF, no matter what type of Ste-
phenson linkage is to be synthesized. On the contrary, the methods
with loop closures have to formulate the equations separately for
each loop with varying number of links. For example, the
Stephenson-III linkage has a four-bar and a five-bar loop, while
the Stephenson-II linkage has two five-bar loops.

Second, the new formulation with parameterized coordinates
leads to polynomial synthesis equations, while the formulation
with loop-closure equations has to deal with trigonometric func-
tions. A system of polynomial equations has normally numeric
advantage over trigonometric equations.

5 Synthesis Flexibility of Design With Incomplete

Data Sets

Based on the foregoing unified formulation of the synthesis
equations, we can observe the following facts:

(a) The dimensional variables in three RR dyads, either in
terms of relative coordinates or in terms of parameterized
coordinates, amount to 12.

(b) The total number of synthesis equations is equal to 2m.

It seems that the system can yield exact solutions for m¼ 6,
i.e., seven poses. However, the dyad synthesis equations for dyad
EF involve only coordinates of points E0 and F and admit exact
solutions with four equations, i.e., for at most m¼ 4. In other
words, the six-bar linkages can admit solutions at most m¼ 4, or,
five poses, the same number of poses as the four-bar linkage. On
the other hand, there are 12 variables. The six-bar linkage synthe-
sis equations compose an underdetermined system. The problem
of six-bar linkage synthesis thus admits infinitely many solutions
for five-pose synthesis.

The underdetermined system of synthesis equations implies
design flexibility to define a few design parameters by the designer,
while exact solutions are still possible. Different selections of
design parameters can be considered. Some possibilities include:

(1) Select and define one of the two RR dyads, either AB or
CD. In this case, the problem requires only to find the other
RR dyad, together with the dyad EF. This is the case of
synthesis with constrained 3R chains, as reported by Soh
and McCarthy [4].

(2) Select and define two grounding points, i.e., centerpoints, B
and D. The problem becomes one to find two circlepoints,
A0 and C0, together with the dyad EF.

(3) Specify any four coordinates for the four points A0;B;C0,
and D.

There are other possibilities of selection to be explored [20].
Note that the selection might lead to no real solutions. Thus, how
to specify robustly additional conditions (constraints) will be a
challenging problem to study.

Due to the fact that the motion synthesis of a six-bar linkage
cannot yield a determined system of synthesis equations, but only
a underdetermined one, the exact synthesis of a six-bar linkage is
essentially a synthesis with incomplete set of pose data. As a mat-
ter of fact, the synthesis with an incomplete data set can also be
found in other cases, where nonsymmetric kinematic chains exist.
For example, the synthesis of spatial revolute-cylindrical-
cylindrical-cylindrical (RCCC) linkages involves an incomplete
data set too, as the RC and CC dyads require different numbers of
prescribed poses for admitting exact solutions. The synthesis with

Table 2 Solutions for the example

Points Coordinates (mm) Points Coordinates (mm) Points Coordinates (mm)

B ½�300;�500�a A0 ½�450:0;�200:0�a D ½50;�250:0�
F ½100:19;�500:08� E0 ½500:08;�200:0� ½a;b�ðCÞ ½0:467;�0:40�

aUser-specified parameters.

Table 3 Dimensions of a synthesized Stephenson-II linkage
(unit: mm)

Link Length Link Length Link Length Link Length Link Length

BA 335.4 BF 400.0 CD 304.1 BC 206.3 AC 223.5
EF 500.0 AG 492.4 EG 538.5 ED 452.7 GD 254.9

Fig. 6 A Stephenson-II linkage synthesized: (a) CAD model and (b) a piece of coupler curve
and points of visit
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incomplete pose data stands as a special type of problem and
requires due attentions. Given the incompleteness of the data set,
additional conditions should be provided to obtain a solution,
which implies flexibility in the design to choose freely some
design parameters. The selection of parameters with the consider-
ation of robustness is an interesting problem for future study.

6 A Design Example

We provide an example to illustrate the foregoing synthesis
method.

The example is given for the synthesis of a Stephenson-II link-
age. The set of prescribed data of poses is given in Table 1. As we
discussed, the design flexibility of a six-bar linkage allows us to
specify pivoting points. In this example, two pivoting points B
and D are predefined. With Eqs. (4) and (9), a synthesis result was
obtained and listed in Table 2. The synthesis error is equal to
4:9� 10�6. The corresponding link dimensions are calculated, as
shown in Table 3, for which the linkage is illustrated in Fig. 6.
Note that this solution was obtained only for the case with the
coordinates of two points B and D predefined. Obviously, there
are many feasible solutions can be found, if different pivoting
points are specified. This is the so-called design flexibility.

7 Conclusions

The dimensional synthesis of Stephenson linkages was studied.
A contribution of the work is the unified formulation of dimen-
sional synthesis equations, which is applicable to the three types
of Stephenson linkages. The unified formulation eases the imple-
mentation of the dimensional synthesis of six-bar of linkages.

A coordinate parameterizations is proposed, by which the posi-
tion vector of an R joint on a ternary link is expressed as the linear
combination of the position vectors of the other two R joints on
the same link. The coordinate parameterization enables the exten-
sion of the Burmester theory from the four-bar linkage to the
six-bar linkage, and finally leads to the unified formulation of the
dimensional synthesis equation of three types of Stephenson link-
ages. The new method offers advantages over the synthesis meth-
ods based on loop-closure equations in the follow aspects:

(1) The introduction of parameterized coordinates avoids using
intermediate rotational variables, thus makes the synthesis
equation more concise. The number of variables in the syn-
thesis is constant, not varying with the number of poses.

(2) The new method allows the three types of Stephenson link-
ages to be synthesized with a set of uniform equations, regard-
less the difference in the kinematic chains of the linkages.

(3) The new formulation yields a system of polynomial equa-
tions which can be solved with many available efficient
algorithms for polynomial systems.

In this work, the parameterized coordinates are applied to Ste-
phenson linkages. It is possible to extend to other six-bar linkages
with ternary links, such as the Watt linkages. Moreover, providing
the design flexibility in six-bar linkage motion synthesis, robust
selection of design parameters could be addressed in future study.
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Appendix: Parametric Coefficients A2;B2;C2

Stephenson-III Linkage

A2 ¼ rT
j c0 � dTc0 (A1a)

B2 ¼ rT
j Ec0 � dTEc0 (A1b)

C2 ¼ dTc0 � rT
j dþ rT

j rj=2 (A1c)

Stephenson-II Linkage

A2 ¼ ðMa0ÞT½Nðb� rjÞ � Rjd0� (A2a)

B2 ¼ ðMEa0ÞT½Nðb� rjÞ � Rjd0� (A2b)

C2 ¼� ½Nðb� rjÞ�TRjd0 � ðMa0ÞTNbþ ðMa0ÞTd0

þðNbÞTd0 þ ðð1� aÞ2 þ b2Þð�rT
j bþ rT

j rj=2Þ (A2c)

Stephenson-I Linkage

A2 ¼ ðMa0ÞTðPrj þ Nb� URje0 � VfÞ (A3a)

B2 ¼ ðMEa0ÞTðPrj þ Nb� URje0 � VfÞ (A3b)

C2¼ðNb�URje0�VfÞTðPrjÞ�ðMa0ÞTðNb�Ue0�VfÞ
�ðVfÞTUð1�RjÞe0þðNbÞTUð1�RjÞe0

þðða�lÞ2þðb��Þ2ÞrT
j rj=2 (A3c)
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