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a b s t r a c t 

This work presents a parametric model of 3- P PR 1 planar parallel manipulators, aiming to 

optimize shape design of the base and mobile platforms. The kinematic model is estab- 

lished with shape parameters and motion variables. With the model, the inverse and for- 

ward position analyses are carried out, upon which the dexterity performance in terms 

of conditioning index is evaluated and analyzed. The analysis of global dexterity reveals 

a number of platform shapes, which lead to singularity in all configurations and must 

be avoided in design. Further performance evaluation in terms of transmission quality is 

also presented. Finally, two optimal configurations for the considered manipulators are ob- 

tained from the numerical simulation results. A case study is included to demonstrate the 

dynamics performance with an optimal platform shape design. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Parallel manipulators (PMs) are closed-loop mechanisms composed of a mobile platform (MP) coupled to a fixed base by

serial limbs. Compared with serial manipulators, PMs own the advantages of higher mechanical rigidity, reduced effective

inertia, larger load-weight ratio, better orientation precision, suitable positional actuators arrangement and stabile capacity.

On the other hand, they have some limitations, such as limited workspace, complex forward position problems and coupled

dynamics, which bring challenges for the design and control of PMs [1] . 

Planar parallel manipulators (PPMs) are considered as a special case of PMs. They can provide planar motion with three

degree of freedoms: two translations and one rotation. Extensive researches of PPMs have been reported, see e.g. [2–15] .

Husty [2] studied the non-singular assembly-mode changing motions for a 3-R P R PPM. The optimum kinematic design of a

3- R RR PPM was reported in [3] . Staicu [4] focused on the inverse dynamics of a 3- P RR PPM. The kinematics performance

analysis of a 3- P RP PPM called star-triangle manipulator was presented in [5] . A geometrical approach for workspace analysis

of PPMs was developed in [6] . Bonev et al. [7] analyzed the singularity of PPMs through application of screw theory. Gao et

al. [8] revealed the relationships between the shapes of the workspaces and the link lengths of symmetrical PPMs. 

The shapes of the platforms, including the base and the MP, affect the kinematic performance of PPMs. A 3-PPR PPM

has an equilateral triangle base (E-shape base) and an equilateral triangle MP (E-shape MP) was proposed by Choi et al.

[9,10] , for providing planar motion for a nano-scale precision manipulation. Bai and Caro introduced the 3-PPR PPM with
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Nomenclature 

l The side length of the isosceles triangle mobile platform (MP) 

l 0 The length of the bottom link of the base 

l i The displacement of the actuating prismatic joint of limb i 

θ Half of the vertex angle of the MP 

α, β The adjacent angles of the base 

x, y, φ Position and orientation of the MP with respect to the global frame 

$ Ii , $ Ti , $ Oi The input twist screw (ITS), transmission wrench screw (TWS) and output twist screw (OTS) of limb i 

λi , ηi The input and output transmission index of limb i 

γ , ρ The local and global transmission indices of the manipulator 

a square base (S-shape base) and an isosceles triangle MP (I-shape MP), with the purpose to maximize its workspace [11] ;

error and stiffness analyses were presented in [12] . A similar 3-PPR PPM was reported by Wu et al. [13] , which is a part of

an assembly platform, as shown in Fig. 1 . The inverse dynamics and control of the 3-PPR PPM with an S-shape base and

an E-shape MP were reported in [14] . A comparison between the S-shape base and the E-shape base with respect to their

workspace and kinematic sensitivity to joint clearances is available in [15] . 

It is noticeable that all studies above address only two special cases, i.e. E and S-shape of the base, the so called � and

U-shape bases in literature. A more general study of 3-PPR PPMs with different shapes of the base and MP is thus needed

for understanding thoroughly the kinematic and dynamic behaviors of PPMs. For this reason, this paper generalizes the

shapes of the base and the MP and includes the shape parameters in the optimum design. By this approach, two optimal

configurations are obtained for optimal dexterity and motion/force transmission performances. The study yields also some

interesting results, namely, a number of singular shapes that are identified. 

The rest of this paper is organized as follows. Section 2 contains a brief description of general 3-PPR PPMs. The inverse

and forward position analyses are presented in Section 3 . Performance indices in dexterity and transmission quality are de-

scribed in Section 4 . Performance evaluation is described in Section 5 , with a case study included. Conclusions are presented

in the final Section. 

2. The model of general 3-PPR PPMs 

A general model of the 3-PPR PPMs is proposed in this work. As shown in Fig. 2 , the MP is modeled as an isosceles

triangle with side length l and vertex angle 2 θ , the feasible range of the angle being defined as 0 °≤ 2 θ ≤ 180 °. The base

platform is defined geometrically with a segment of length l 0 of the bottom link for one linear guide and two lines with

adjacent angles α, β for the other two linear guides. The feasible ranges of the angles are 0 °≤α ≤ 180 ° and 0 °≤β ≤ 180 °.
Some typical shapes of the base and MP are listed in Table 1 . 

3. Position analysis 

As shown in Fig. 2 , the global frame { O 0 } is attached to the base with its origin located at a vertex of the bottom side,

where X 0 -axis is pointed along the direction of the bottom side. Local frame { O } is attached to the MP and defined in a

similar way, with the origin located at the centroid of the MP. Moreover, the MP pose is defined by position p = [ x, y ] T and

rotation angle φ measured counter-clockwise from the reference point O . We assume that the initial assembly mode of the

considered manipulator is defined with φ = 0 °. 

3.1. Inverse position analysis 

The inverse position problem involves mapping a known pose (position and orientation) of the MP to the actuated input

of each PPR limb. In this work, the first prismatic joint in each limb is actuated, namely the considered manipulators are

3- P PR PPMs. For any given pose ( x, y, φ) of the MP, the position vector of point B i is obtained by 

b i = R b 

′ 
i + p , i = 1 , 2 , 3 (1) 

where b 

′ 
i is the position vector of point B i in the local frame and R is the planar rotation matrix. 

b 

′ 
1 = [ −a, h ] 

T 
, b 

′ 
2 = [ a, h ] 

T 
, b 

′ 
3 = [ 0 , −2 h ] 

T 
(2) 

Here a = l sin θ and h = ( l cos θ )/3. Hence 2 a and 3 h define the bottom side and the height of the MP. On the other hand,

the position vector of point B i can be expressed in another form as 

b = a + d , i = 1 , 2 , 3 (3) 
i i i 
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Table 1 

Typical shapes of the base and MP. 

 

 

 

where a i is the position vector of point A i , and d i is the position vector of 
⇀ 

A i B i , which are given by 

a 1 = l 1 e 1 , a 2 = l 0 e 3 + l 2 e 2 , a 3 = l 3 e 3 , d 1 = d 1 n 1 , d 2 = d 2 n 2 , d 3 = d 3 n 3 (4)

where l i is the displacement of the i th P joint, d i is the distance between point A i and B i , while e i and n i are unit vectors

parallel to the translation direction of corresponding prismatic joints. 

Eqs. (1) and ( 3 ) yield 

b = R b 

′ + p = a + d , i = 1 , 2 , 3 (5)
i i i i 
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Fig. 1. CAD model of an assembly platform for optical modules assembling in a laser lab, in which the platform uses a 3-PPR PPM to provide planar motion 

for the positioning device on the top. 

Fig. 2. Schematic diagram of general 3-PPR PPMs. 

 

 

 

 

 

 

 

Expanding Eq. (5) leads to 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

l 1 = x cos α + y sin α − h sin (φ − α) − a cos (φ − α) (6a)
l 2 = ( x − l 0 ) cos β + y sin β + a cos (φ − β) − h sin (φ − β) (6b)
l 3 = x + 2 h sin φ (6c) 
d 1 = x sin α − y cos α + a sin (φ − α) − h cos (φ − α) (6d)
d 2 = ( l 0 − x ) sin β + y cos β + h cos (φ − β) + a sin (φ − β) (6e)
d 3 = y − 2 h cos φ (6f) 

Since the first P joint in each limb is actuated, the inverse position problem of the considered 3- P PR PPMs is to determine

the actuated inputs l i , and they can be directly determined from Eqs. (6a) to (6c). On the other hand, Eqs. (6d)–(6f) will give

the solutions to the inverse position problem if the second P joint in each limb is chosen as the actuated joint. 

Differentiating both sides of Eqs. (6a)–(6c) with respect to time, we obtain 

˙ u = J −1 ˙ x (7) 

where ˙ u = [ ̇ l 1 , ˙ l 2 , ˙ l 3 ] 
T is the velocity vector of the P joints, ˙ x = [ ̇ x , ˙ y , ˙ φ] T is the velocity vector of the MP. J −1 is the inverse

Jacobian matrix, which is 

J −1 = 

[ 

cos α sin α a sin (φ − α) − h cos (φ − α) 
cos β sin β −a sin (φ − β) − h cos( φ − β) 

] 

(8) 

1 0 2 h cos φ
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3.2. Forward position analysis 

In the forward position problem of the 3- P PR PPMs, the pose of the MP is to be found for any given inputs of the P

joints. By virtue of Eqs. (6a) and (6c), we can get the solutions of x and y expressed by φ{
x = l 3 − 2 h sin φ (9a)

y = 

1 
sin α ( l 1 − ( l 3 − 2 h sin φ) cos α + h sin (φ − α) + a cos (φ − α)) (9b)

Substituting Eqs. (9a) and (9b) into Eq. (6b) leads to 

M sin φ + N cos φ + Q = 0 (10a)

where { 

M = 2 a sin β − 3 h cos β + 3 h sin β cot α
N = a cos β + a sin β cot α

Q = 

sin β
sin α ( l 1 − l 3 cos α) + ( l 3 − l 0 ) cos β − l 2 

(10b)

When sin α = 0 ( α = 0 ° or 180 °) we have 

y = a sin φ − h cos φ − l 2 , M = 3 h, N = a, Q = l 1 − l 3 (11)

Then we can get the solution of φ

φ = tan 

−1 
(

M 

N 

)
± cos −1 

(
−Q √ 

M 

2 + N 

2 

)
(12)

Obviously, the solutions of forward position problem can be derived from Eqs. (9a), (9b) and ( 12 ), but the Jacobian matrix

J cannot be obtained directly from these equations. Here, we can resort to Eq. (8) , the inverse matrix of J −1 will give the

answer to the Jacobian matrix by numerical method. 

4. Performance indices 

In the optimum design, two performance indices, one for the kinematic performance, and the other for the transmission

quality, are considered. 

4.1. Dexterity index 

Dexterity index is defined as a measure to evaluate the ability of a manipulator to arbitrarily change its pose. It depends

on the structure of the manipulator, and it can be expressed in terms of the properties of Jacobian matrix. 

Several indices have been proposed to measure manipulator dexterity, see e.g. [16–19] . One of the frequently used in-

dices is called conditioning index which based on condition number as introduced in [16] . The condition number is applied

to evaluate the velocity, rigidity and accuracy mapping characteristics between the MP and the joint variables [17] . The

condition number of a Jacobian matrix of full rank can be defined as 

k = ‖ 

J ‖ 

∥∥J −1 
∥∥ (13)

where || •|| denotes the matrix norm, and the usually used matrix norm is Frobenius norm. Since the condition number does

not have an upper bound, its reciprocal known as local conditioning index (LCI) is more frequently used [18] . 

LCI = 

1 

k 
(14)

LCI is bounded in the range of 0 to 1, where 0 represents the singularity poses and 1 denotes the isotropic configuration.

Therefore, the higher the value of LCI, the greater the dexterity of the manipulator is. Obviously, LCI depends on the joints

coordinates which means it is pose-dependent, and it is applied to evaluate the local dexterity. 

In order to evaluate the global dexterity of the manipulator over the entire workspace, Gosselin [19] proposed the global

conditioning index (GCI) as 

GCI = 

∫ 
W 

(
1 
k 

)
dW ∫ 

W 

dW 

(15)

where W is the point distributed in the workspace, and GCI denotes the average value of 1/ k over the workspace. Consider-

ing the shape complexity of the workspace, the GCI is normally calculated numerically as 

GCI ≈ 1 

N W 

N W ∑ 

j=1 

1 

k 
(16)

where N is equal to the number of the points uniformly distributed over the workspace. 
W 
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Fig. 3. The twist and wrench screws of a rigid body. 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Motion/force transmission index 

In this work, transmission quality evaluation based on screw theory is adopted. The general definition of motion/force

transmission index is first introduced, upon which the index for the PPMs is derived. 

4.2.1. Definitions of motion/force transmission index 

As depicted in Fig. 3 , a twist screw can be used to represent the instantaneous motion of a rigid body 

$ 1 = w ( ω;ν) = w ( ω;r 1 × ω + h 1 ω ) = ( L 1 , M 1 , N 1 ; P 1 , Q 1 , R 1 ) (17) 

where ω is the unit rotational velocity of the rigid body, r 1 is the position vector of a point on the twist axis, w represents

the amplitude of the twist screw, and h 1 defines the pitch. Similarly, a wrench screw can express the wrench exerted on

the rigid body 

$ 2 = f ( f ; τ ) = f ( f ;r 2 × f + h 2 f ) = ( L 2 , M 2 , N 2 ; P 2 , Q 2 , R 2 ) (18) 

where f represents the unit pure force vector, r 2 is the position vector of a point on the wrench axis, f denotes the amplitude

of the wrench screw, and h 2 defines the pitch. 

The reciprocal product between twist screw $ 1 and wrench screw $ 2 is defined as 

$ 1 ◦ $ 2 = L 1 P 2 + M 1 Q 2 + N 1 R 2 + L 2 P 1 + M 2 Q 1 + N 2 R 2 = ( h 1 + h 2 ) cos ϕ − d sin ϕ (19)

where ϕ and d are the angle and distance between these two screws. It can be seen that the reciprocal product indicates

their instantaneous power [20] , and the wrench will not apply any work to the rigid body if the reciprocal product is equal

to 0. Transmission quality can be defined by the twist and wrench screws as [21] , 

TI = 

$ 1 ◦ $ 2 

| $ 1 ◦ $ 2 | max 

= 

| ( h 1 + h 2 ) cos ϕ − d sin ϕ | √ 

( h 1 + h 2 ) 
2 + d 2 max 

(20) 

where d max is the potential maximal distance between the two screws. 

Considering the two screws in one limb, namely, $ Ii , the input twist screw (ITS) and $ Ti , the transmission wrench screw

(TWS), transmission quality at the input side called input transmission index (ITI) is defined as 

λi = 

$ Ii ◦ $ T i 

| $ Ii ◦ $ T i | max 

(21) 

The transmission quality at the output side, called output transmission index (OTI), is defined as 

ηi = 

$ Oi ◦ $ T i 

| $ Oi ◦ $ T i | max 

(22) 

where $ Oi is the output twist screw (OTS), which represents the instantaneous motion of the moving platform when fixing

all the actuators except the one in the i th limb [22] . 

On the basis of ITI and OTI, the local transmission index (LTI) of a PM with n-DOF is defined as 

γ = min ( min ( λi ) , min ( ηi ) ) , ( i = 1 , 2 , · · · , n ) (23) 

In order to obtain high quality of force/motion transmissibility, the most widely accepted design limit for the transmis-

sion angle is [45 °, 135 °]. According to literature [20,23] , the LTI should be no smaller than sin 45 °≈0.7. The set of poses is

called the good transmission workspace (GTW) when γ ≥ 0.7. 

As our interest is the overall performance of PMs, we introduce global transmission index (GTI), in analogy to GCI, which

is calculated numerically as 

ρ ≈ 1 

N W 

N W ∑ 

j=1 

γ (24) 

GTI ranges from 0 to 1, the larger the value of GTI, the better the global transmission performance. 
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Fig. 4. Screw system in the 3- P PR PPMs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2. Motion/force transmission index of 3- P PR PPMs 

As shown in Fig. 4 , the considered PPMs can be expressed by screws. Taking the first P PR limb for an example, with

respect to the global frame, the twist screws can be written as { 

$ 11 = ( 0 , 0 , 0 ; cos α, sin α, 0 ) 
$ 12 = ( 0 , 0 , 0 ; sin α, − cos α, 0 ) 

$ 13 = 

(
0 , 0 , 1 ; b 1 y , −b 1 x , 0 

) (25)

where b ix and b iy ( i = 1, 2, 3) are the coordinates of point B i , which can be solved from Eq. (3) . U 

k 
1 

= { $ 11 , $ 12 , $ 13 } represents

the kinematic screw system of the first limb. Since the first prismatic joint is active, the corresponding twist screw is the

ITS 

$ I1 = $ 11 = ( 0 , 0 , 0 ; cos α, sin α, 0 ) (26)

In a similar way, two other ITSs of the considered 3- P PR PPMs can be derived as 

$ I2 = $ 21 = ( 0 , 0 , 0 ; cos β, sin β, 0 ) (27)

$ I3 = $ 31 = ( 0 , 0 , 0 ; 1 , 0 , 0 ) (28)

Three linearly independent screws which are reciprocal to U 

k 
1 

are obtained { 

$ r 11 = ( 0 , 0 , 1 ; 0 , 0 , 0 ) 
$ r 12 = ( 0 , 0 , 0 ; 1 , 0 , 0 ) 
$ r 13 = ( 0 , 0 , 0 ; 0 , 1 , 0 ) 

(29)

where $ r 
1 i 

( i = 1, 2, 3) is the constraint wrench screw that the P PR limb provides for the MP, and U c = { $ r 
11 

, $ r 
12 

, $ r 
13 

} denotes

the constraint wrench screw system. Moreover, all the three P PR limbs provide the same constraint wrench screw system. 

As for the TWS of the first P PR limb, it is reciprocal to all the passive joint screws in U 

k 
1 

($ 12 and $ 13 ). In addition, all the

wrench screws in U c are linear independent, and we have 

$ T 1 = 

(
cos α, sin α, 0 ; 0 , 0 , b 1 x sin α − b 1 y cos α

)
(30)

It is a pure force parallel to the moving direction of the P joint in the first limb, and passes through point B 1 , as shown

in Fig. 4 . The TWSs of the second and third limbs can be obtained by the same approach, 

$ T 2 = 

(
cos β, sin β, 0 ; 0 , 0 , b 2 x sin β − b 2 y cos β

)
(31)

$ T 3 = 

(
1 , 0 , 0 ; 0 , 0 , −b 3 y 

)
(32)

From above equations, it can be obtained that 

$ Ii ◦ $ T i = 1 , i = 1 , 2 , 3 (33)

Obviously, the corresponding twist and wrench are parallel to each other, which means the motion from the actuator

can be totally transmitted by its transmission wrench, and it leads to 

λi = 

$ Ii ◦ $ T i 

| $ Ii ◦ $ T i | max 

= 1 , i = 1 , 2 , 3 (34)
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Fig. 5. Typical shapes of 3- P PR PPM platforms: (a) I-I, (b) P-I, (c) R-I and (d) T-E shape. 

 

 

 

 

 

 

 

 

 

 

 

We can now determine the OTS of each limb. Taking the first limb for an example, as $ O 1 is reciprocal to

{ $ r 
11 

, $ r 
12 

, $ r 
13 

, $ T 2 , $ T 3 } , we thus have 

$ O 1 = 

{(
0 , 0 , 1 ; b 3 y , b 2 y cot β − b 3 y cot β − b 2 x , 0 

)
, 0 

◦
< β < 180 

◦

( 0 , 0 , 1 ; 0 , 1 , 0 ) , others 
(35) 

As can be seen in the equation, when 0 °<β < 180 °, $ O 1 is a pure rotation, the axis of which being perpendicular to the

plane B 1 B 2 B 3 and passing through point G 1 , where G 1 is the center of rotation when the second and third P joints are

locked, as shown in Fig. 4 . When β = 0 ° or 180 °, $ O 1 is a pure translation, which is parallel to the Y 0 -axis. 

By the same approach, we can get the OTSs for another two limbs 

$ O 2 = 

{(
0 , 0 , 1 ; b 3 y , b 1 y cot α − b 3 y cot α − b 1 x , 0 

)
, 0 

◦
< α < 180 

◦

( 0 , 0 , 1 ; 0 , 1 , 0 ) , others 
(36) 

$ O 3 = ( 0 , 0 , 1 ; Q 1 , Q 2 , 0 ) (37) 

where ⎧ ⎪ ⎨ 

⎪ ⎩ 

Q 1 = 

b 1 y sin β cos α − b 2 y sin α cos β + ( b 2 x − b 1 x ) sin α sin β

sin (β − α) 

Q 2 = 

b 2 x sin β cos α − b 1 x sin α cos β + ( b 1 y − b 2 y ) cos α cos β

sin (α − β) 

(38) 

for cases sin( α- β) 
 = 0. 

When sin( α- β) = 0, two cases are implied. The first case is that PPMs are designed with the L-I shape platforms, as

shown in Fig. 9 (a). In such a case, the MP can only translate perpendicular to the moving direction of the third P joint, if

the actuators in the first and second limbs are fixed. This means that the OTS of the third limb is a pure translation normal

to moving direction of the P joint in the third limb. At the meantime, the TWS of the third limb is a pure force parallel to

the moving direction of the third P joint as discussed above. Therefore, the twist and wrench are orthogonal, and the third

limb does not make any contribution to balance the load exerted on the MP. As a result, all the OTIs of the three limbs

within the L-I shape are equal to 0, hence the LTI is 0. 

In the second case, PPMs have platforms of the P-I shape, as shown in Fig. 5 (b). If the P joints in the first and second

limbs are fixed, the MP could only translate along the moving direction of the P joint in the first (second) limb, which

means the OTS of the third limb is a pure translation, and we have 

$ O 3 = ( 0 , 0 , 0 ; sin α, − cos α, 0 ) (39) 

Since λi = 1, the LTI of the considered 3- P PR PPMs can be calculated based on following equation 

γ = min ( ηi ) = min 

(
$ Oi ◦ $ T i 

)
, i = 1 , 2 , 3 (40) 
| $ Oi ◦ $ T i | max 
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Fig. 6. GCI of PPMs with platforms of (a) I-I, (b) P-I, (c) R-I and (d) T-E shape. 

 

 

 

 

 

 

 

 

 

 

 

 

5. Performance evaluation 

With the selected performance indices, optimum platform design is conducted. We look at first on the optimum kine-

matic design. Afterwards, the optimum design in terms of transmission quality is considered. 

5.1. Dexterity performance evaluation 

Four typical shapes, as shown in Fig. 5 , are taken into consideration. They include the I-I, P-I, R-I and T-E shapes, where

the first and the second letters represent the shapes of the base and the MP, as defined in Table 1 . In particular, the first

three shapes have an isosceles triangle MP, while their bases are designed as isosceles trapezoid ( α + β = 180 °), parallelo-

gram ( β = α) and right-angle skew trapezoid ( α = 90 °), respectively. The T-E shape PPM has an equilateral triangle MP, with

a trapezoid base (0 °≤α, β ≤ 180 °). As reported in [10] , the 3- P PR PPM under study will obtain great global performance

when l / l 0 = 0.5. For this reason, the dimensional parameters of the considered PPMs in this work are taken as l 0 = 0.32 m,

l = 0.16 m. 

The GCIs of PPMs associated to the four typical shapes are depicted in Fig. 6 . It is seen that the I-I, P-I, and R-I shapes

have the same maximum GCI, which is equal to 0.0808, as the point P 1 in the plots. The optimal shape is shown in

Fig. 7 , which corresponds to α = β = 90 ° and θ = 90 °, or S-O shape, which means that the isosceles triangle MP is opened

and transformed to a line. 

For the T-E shape, as shown Fig. 6 (d), the maximum GCI is found as 0.0581, as the point P 3 in the plot. This corresponds

to the E-E shape platforms. In the plot, point P 4 stands for the S-E shape platforms, for which the GCI is equal to 0.0410. 

Fig. 8 shows the contour map of the GCI of PPMs with the P-I shape platforms. It can be observed that the GCI is

symmetrically distributed about β = 90 °. 
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Fig. 7. A PPM with S-O shape platforms has the maximum GCI. Three R joints are located on one line. 

Fig. 8. Contour map of GCI of a PPM with the P-I shape platforms. 

Fig. 9. 3- P PR PPMs with (a) L-I, (b) I = I and (c) P-C shape platforms are always singular. In the figure, G 2 and G 3 are instantaneous centers of rotation. 

 

 

 

 

 

 

 

It is noticeable that the GCI is equal to 0 in a few cases. A zero GCI implies zero LCI in all configurations. In other words,

the PPM is always singular, to which we refer as shape singularity to distinguish from other types of singularities. These

cases include the followings: 

• L-I shape platforms. In Fig. 6 (a), the GCI is equal to 0 in case of ( α = 0 °, β = 180 °) and ( α = 180 °, β = 0 °) with the I-I

shape, these two cases pertain to the L-I shape, as shown in Fig. 9 (a), where the three P PR limbs are parallel to each

other. With this shape, the MP can still move along the direction of the P joints even without actuating the three P

joints. 

In Fig. 6 (b), the singular shapes are also found for ( α = 0 °, β = 0 °) and ( α = 180 °, β = 180 °) with the P-I shape, which also

correspond to the L-I singular shape. Moreover, the four PPMs represented by the four corner points in Fig. 6 (d) pertain
to the L-I singular shape as well. 
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Fig. 10. LCI of the 3- P PR PPMs with different platform shapes. 

Fig. 11. Singularity configurations of 3- P PR PPMs with platforms of (a) I-I ( α + β = 180 °) and (b) P-I ( β = α) shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• I = I shape platforms. In Fig. 6 (a), there is a red line where the GCI is equal to 0. The PPMs on this line are defined by

α + β = 180 °, 2 θ = 2 α − 180 °, and α > 90 °, where the base is an isosceles trapezoid. As the intersection angle made by the

first and second P joint axes is equal to 2 θ too, we note the shapes of the base and the MP by ‘I = I’. For PPMs constructed

with this type of platform shape, the MP can still perform a small rotation about a specific point even all the actuators

are locked, as depicted in Fig. 9 (b). 

Noted that, the PPM platform represented by point P 5 ( α = 120 °, β = 60 °, θ = 30 °) in Fig. 6 (d) is a special case of the I = I

singular shape. 

• P-C shape platforms. In Fig. 6 (b), singular shape is identified with the P-C shape ( β = α, θ = 0 °). This singular shape is

shown in Fig. 9 (c). The MP can still perform a small rotation about the instantaneous center of rotation ( G 3 ) even without

actuating all the three actuators. The singular shape identified at point P 2 ( β = α = 90 °, θ = 0 °) in Fig. 6 (c) corresponds

to the P-C singular shape too. 

In this work, we also look further into the local dexterity performance, selecting five different designs of the considered

3- P PR PPMs. These cases are PPMs of (1) P-I shape, (2) E-C shape, (3) E-E shape, (4) S-E shape, and (5) S-O shape. 

Fig. 10 shows LCIs with 5 PPMs rotating for 360 °. As shown in the figure, the S-O shape (case 5) also possesses the

best local dexterity and its maximum LCI is 0.1248. Within E-C (case 2), E-E (case 3), S-E (case 4) and S-O shapes, the

manipulator will reach singularities in cases of φ = ±90 ° where the LCI is equal to 0. The singularity is demonstrated in

Fig. 11 (a), where G 4 and G 5 are the instantaneous centers of rotation even locking all the actuators. For Case 1 ( β = α = 60 °,
θ = 30 °), singularities are found with φ = 60 ° and −120 °, this configuration corresponds to the P-I shape, and it can be



150 X. Wu et al. / Mechanism and Machine Theory 118 (2017) 139–153 

Fig. 12. GTI of PPMs with MP platforms of (a) I-I, (b) P-I, (c) R-I and (d) T-E shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

observed that φ = α and α−180 ° are the singularities for general P-I shape, as demonstrated in Fig. 11 (b), where G 6 and G 7 

are the instantaneous centers of rotation. 

5.2. Motion/force transmission evaluation 

The four platform shapes as discussed in Section 5.1 are considered. Their GTI distributions are depicted in Fig. 12 .

Comparing Figs. 6 and 12 , it is found that the distributions of GCI and GTI within corresponding shapes are very similar,

while some differences are noticeable. 

It is seen in both Figs. 12 (a) and (d) that the maximum GTI is equal to 0.8314 at point P 3 in the two plots. The corre-

sponding PPM platforms are of E-E shape. In Fig. 12 (b), the maximum GTI is equal to 0.7701 at point P 1 , which corresponds

to S-O shape. The maximum GTI in Fig. 12 (c) is equal to 0.7720 at point P 6 ( α = 90 °, β = 112 °, θ = 68 °). 
It is noticeable that the GTI indicates the same singular shapes as the GCI, namely, the L-I, I = I and P-C singular shapes.

As analyzed in Section 4.2.2 , the LTI of the L-I shape is always equal to 0, so it is a singular shape. For the I = I and P-C

shapes, as shown in Fig. 13 (a) and (b), $ T 1 and $ O 1 intersect vertically, their reciprocal product is equal to 0, so does the GTI.

In light of this, the singular shapes can also be identified from GTI plot in Fig. 12 . 

Fig. 14 shows the LTI distribution of the same five chosen designs as mentioned in the analysis of LCI. The PPM of E-E

shape also owns the best local transmission quality. Its LTI is equal to 0 when φ = ±90 °, which is also the configurations

of singularity. The GTW workspace is found with φ in the range of [ −72 °, 72 °]. The manipulator has the best force/motion

transmissibility when φ = 0 °. 
In summary, dexterity and transmissibility show their similarities in the distribution over shape design parameters. Both

GCI and GTI can be applied to determine the singular shapes, while LCI and LTI are useful to solve the singularities of

different configurations. On the other hand, there are also some differences in the two performance indices, as analyzed in
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Fig. 13. The first P PR limb expressed by screws within (a) I = I and (b) P-C shape. 

Fig. 14. LTI of the 3- P PR PPMs with five designs of platforms. 

Table 2 

Optimal and singular shapes of the 3- P PR PPMs. 

Platform I-I P-I R-I T-E 

Optimal shapes GCI S-O S-O S-O E-E 

GTI E-E S-O β = 112 °, θ = 68 ° E-E 

Singular shapes GCI β = 0 °; β = 180 °; 
θ = α−90 °

β = 0 °; β = 180 °; 
θ = 0 °

β = 90 °, θ = 0 ° α = 0 °, β = 0 °; α = 0 °, β = 180 °; α = 120 °, 
β = 60 °; α = 180 °, β = 0 °; α = 180 °, β = 180 °

GTI β = 0 °; β = 180 °; 
θ = α−90 °

β = 0 °; β = 180 °; 
θ = 0 °

β = 90 °, θ = 0 ° α = 0 °, β = 0 °; α = 0 °, β = 180 °; α = 120 °, 
β = 60 °; α = 180 °, β = 0 °; α = 180 °, β = 180 °

 

 

 

 

 

this section. The PPMs of S-O shape show the best dexterity, while PPMs of E-E shape have the best transmission quality.

The optimal and singular shapes of the four discussed typical platforms in terms of dexterity and transmission quality are

summarized in Table 2 . 

5.3. A case study of dynamic performance with the optimum platform shape design 

We include a case study of dynamics simulation to show the dynamic behavior of the optimum design. The masses are

taken as m 1 = 1.7574 kg, m 2 = 0.8313 kg, m 3 = 4 8.4 972 kg, where m 1 , m 2 and m 3 stand for the masses of the driving part,

passive part and MP, respectively. The corresponding moments of inertia are taken as I 1 = 0.0043 kg m 

2 , I 2 = 0.0039 kg m 

2

and I = 2.9431 kg m 

2 . 
3 
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Fig. 15. Simulation of driving forces for PPMs with platforms of (a) a general shape, (b) the S-O shape and (c) the E-E shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The trajectory of the MP is defined as ⎧ ⎪ ⎨ 

⎪ ⎩ 

x = 

1 
2 

l 0 + 

1 
10 

sin 

(
π
5 

t 
)

y = 

√ 

3 
4 

l 0 + 

1 
10 

cos 
(

π
5 

t 
)

φ = 

π
6 

(41) 

Three designs including a general platform shape ( α = 135 °, β = 45 °, θ = 30 °) and the two optimum designs (S-O and E-E

shapes) are considered, while the dimensional parameters are the same as given in Section 5.1 . The driving forces can be

readily obtained, and the results of this given motion are shown in Fig. 15 , where F i is the driving force of limb i . 

The maximum driving forces for the three designs with the given motion trajectory are 3.97 N, 2.08 N, and 1.41 N, respec-

tively. Obviously, the optimum PPMs of E-E shape and S-O shape show performance improvement over the PPM of general

shape platforms. Moreover, the PPM of E-E shape has the better force/motion transmission quality than the PPM of S-O

shape, if we evaluate in terms of the magnitude of required driving forces. The result is in line with the analysis that PPMs

of E-E shape has the best transmission quality. 

6. Discussion and conclusions 

In this work, a parametric model with shape parameters and motion variables is established, aiming to optimize shape

of the base and MP of general 3- P PR PPMs. In the optimum shape design, the dexterity and motion/force transmission

performances are considered. The study shows that the PPMs of S-O shape exhibit the best dexterity, while PPMs of the

E-E shape show the best transmission quality. A case study of dynamics simulation is included to demonstrate the dynamic

behavior of the PPMs of E-E shape. 

A contribution of this work is the establishment of a parametric model of 3- P PR PPMs. By including the shape parameters

of the base and mobile platforms, the model allows us to investigate the influence of the platforms’ shape on the kinematic

and dynamic performances. The optimal shape design in this work shows the significance of this model. 

Another contribution of this work is the identification of the singular shapes, the shape of the base and the MP that

leads to singularity in all configurations. A number of singular shapes, including the L-I, I = I, and P-C shapes have been

identified with the parameterized model. To the author’s knowledge, this is the first time that singular shapes are reported

in literature. 

In our work, two major performances, namely, dexterity and motion/force transmission indices, are considered in opti-

mum design and further compared. It is seen that both indices indicate the identical singular shapes. On the other hand,

optimal designs with the two indices are different. This suggests that the optimal criteria has to be selected based on the

design problems and requirements. 
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