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Abstract

Proposed in this paper is a unified, robust algorithm for the input–output analysis of planar, spherical and spatial four-
bar linkages. Robustness is needed to account for architecture and algebraic singularities that are likely to occur, for exam-
ple, when conducting an iterative optimization of the linkage at hand. The unified feature of the algorithm is based on the
algebra of dual numbers and the Principle of Transference, which allows the extension of the algorithm developed for
spherical linkages to their spatial counterparts by a simple dualization of the real geometric relations derived for the former.
Numerical examples are included to demonstrate the application of the algorithm.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In designing spatial mechanisms, a robust algorithm of input–output analysis of four-bar linkages is desir-
able in order to account for architecture and algebraic singularities. For planar, spherical, and spatial four-bar
linkages, their displacement analysis has been extensively studied and reported in the technical literature [1–
10]. Generally, the analysis of four-bar linkages boils down to solving a system of trigonometric equations.
The established approach to solving this system relies on transforming the equations at hand into polynomial
equations by means of the trigonometric tan-half-angle identities. However, this transformation entails a sin-
gularity at p, i.e., when one of the polynomial roots of the transformed equation becomes unbounded, which
shows that this approach lacks robustness. To cope with this problem, we introduce a robust geometric

approach to obtain the roots of the input–output (I/O) equation of four-bar linkages of the RCCC type, that
is derived from the analysis of planar and spherical RRRR linkages.

The most straightforward way to derive the input–output equation of a spatial RCCC four-bar linkage is to
apply the Principle of Transference [11–13]. The beginnings of this principle are traced back to the early 1960s.
0094-114X/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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One of its most notable applications was reported by Yang and Freudenstein [14], who analyzed a RCCC spa-
tial mechanism by dualizing the closure equations of a spherical four-bar mechanism.

Reported in this paper is a unified algorithm that, starting from the I/O equation of the spherical four-bar
linkage, avoids the tan-half-angle singularity mentioned above. This is done by transforming the trigonometric
equation into a geometric problem, namely, the location of the intersections of a line with the unit circle cen-
tered at the origin of the planar coordinate frame containing the line. Now let us recall that the solution of any

quadratic equation is geometrically equivalent to finding the intersections of an arbitrary conic with a line. It
should become apparent that reducing the problem at hand to finding the intersections of a circle with a line is
a better-structured problem than the former, and hence, more robust. Given that the I/O analysis of planar
and spherical four-bar linkages are formally identical, the analysis of the former is included for completeness.
We tested our algorithm with the numerical example included in [14], which Yang and Freudenstein solved
using an iterative method applied to a system of six non-linear equations in six unknowns. While the results
obtained with the two distinct procedures match quite satisfactorily, our approach is based on a reduced sys-
tem of three simpler equations, one linear and two quadratic.

The motivation behind the algorithm is the need to design robust overconstrained parallel-kinematics
machines with reduced mobility, i.e., with motion capabilities lying within a proper subset of the group of
rigid-body displacements [15]. Applications of the algorithm to the robust design of spatial mechanisms such
as three-degree-of-freedom spherical wrists, accounting for revolute-axis misalignments, are possible with the
formulation proposed here.
2. A robust analysis of planar and spherical four-bar linkages

The analysis proposed here for spatial four-bar linkages, also known as RCCC linkages, is based on robust
algorithms for planar and spherical RRRR linkages, which we include here for completeness. By virtue of the
broad common ground shared by planar and spherical four-bar linkages, we treat here their I/O analysis
within the same framework.
2.1. I/O equations of RRRR linkages

A general planar four-bar linkage is shown in Fig. 1a, wherein the input and output angles are denoted by w
and /, respectively. The link lengths are defined by the set of parameters faig4

1. Moreover, the general I/O
equation of the planar linkage of Fig. 1a can be written in the non-dimensional form [16]:
k1 þ k2 cos /� k3 cos w� cos w cos /� sin w sin / ¼ 0 ð1aÞ
which is called the Freudenstein equation, with fkig3
1 referred to as the Freudenstein parameters, and defined as
k1 �
a2

1 þ a2
2 � a2

3 þ a2
4

2a2a4

; k2 �
a1

a2

; k3 �
a1

a4

ð1bÞ
Fig. 1. Four-bar linkages: (a) planar; and (b) spherical.



Fig. 2. Relations between input and output angles and those of the DH notation: (a) w and h2; and (b) / and h1.
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Depicted in Fig. 1b is the spherical counterpart of the foregoing four-bar linkage, made up of four revolute
joints of axes intersecting at one common point O, the center of the linkage. The Denavit–Hartenberg
(DH) notation [17] is adopted to define the linkage parameters and joint variables. Within this notation,
the relation between w and h2 as well as that between / and h1 is depicted in Fig. 2a and b, respectively.1

Hence,
1 Th
by the
w ¼ h2 þ p; / ¼ �h1 ð2Þ
the latter following because /þ h1 ¼ 2p or 0.
The I/O equation of the spherical four-bar linkage takes the form [14]:
k1 þ k2 cos wþ k3 cos w cos /� k4 cos /þ k5 sin w sin / ¼ 0 ð3aÞ
where
k1 � ca1ca2ca4 � ca3; k2 � sa1sa2ca4; k3 � ca1sa2sa4; ð3bÞ
k4 � sa1ca2sa4; k5 � sa2sa4 ð3cÞ
with cð�Þ � cosð�Þ, sð�Þ � sinð�Þ, and faig4
1 denoting the linkage dimensions, as shown in Fig. 1b.

In observing the I/O equations of both the planar and spherical linkages, we notice that they both can be
cast in the general form
AðwÞ cos /þ BðwÞ sin /þ CðwÞ ¼ 0 ð4Þ
with the coefficients A(w), B(w) and C(w) summarized in Table 1.
The solution of Eq. (4) for / has been based on one of two distinct approaches, either purely numerical, by

means of an iterative procedure [18,19], or algebraic, by means of a transformation of the trigonometric equa-
tion into an algebraic equation; the latter is done by means of the tan-half-angle identities:
tan
/
2

� �
� s; sin / � 2s

1þ s2
; cos / � 1� s2

1þ s2
ð5Þ
Upon substitution of the foregoing identities into Eq. (4), a quadratic equation in s is obtained:
DðwÞs2 þ 2EðwÞsþ F ðwÞ ¼ 0 ð6Þ
whose corresponding coefficients D(w), E(w) and F(w) are given in Table 2.
Now, / can be readily computed once the two roots of Eq. (6) are available. Observing Eq. (6), one may

realize that the roots can be found by simply applying the well-known formula for the roots of the quadratic
equation. However, the said formula must be handled with care when finding its roots numerically. As Forsy-
the [20] pointed out, it is difficult to devise an algorithm that will safely solve the quadratic equation without
the effect of round-off error amplification, as arising from what is called in numerical analysis catastrophic can-
e lines labeled a2 and a4 in these figures are the front views of the planes defined by the axes Z2 and Z3, on which a2 is measured, and
axes Z4 and Z1, on which a4 is measured, respectively.



Table 1
Coefficients of the trigonometric I/O equation

Case A(w) B(w) C(w)

Planar k2 � cos w � sin w k1 � k3 cos w
Spherical k3 cos w� k4 k5 sin w k1 þ k2 cos w

Table 2
Coefficients of the polynomial I/O equation

Case D(w) E(w) F(w)

Planar k1 � k2 þ ð1� k3Þ cos w � sin w k1 þ k2 � ð1þ k3Þ cos w
Spherical k1 þ ðk2 � k3Þ cos wþ k4 k5 sin w k1 þ ðk2 þ k3Þ cos w� k4
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cellation. Moreover, the quadratic equation deflates for a value of / ¼ �p; the deflated equation will produce
only one solution in this case when, in fact, there actually exist two.

It is apparent that the quadratic-equation approach to the input–output analysis of the four-bar linkage
would better be avoided, especially when writing code to implement this analysis. As an alternative, we can
pursue a robust geometric approach, free of the singularity s! �1 of the transformation of Eq. (5), as
described in the balance of this section.

2.2. A geometric approach

Upon recalling Eq. (4) and rewriting it in a slightly different form, we obtain
L : AðwÞuþ BðwÞvþ CðwÞ ¼ 0 ð7aÞ

where
u � cos /; v � sin / ð7bÞ

and hence, u and v are subject to the constraint
C : u2 þ v2 ¼ 1 ð7cÞ

The input–output equation thus defines a line L in the u–v plane, while the constraint (7c) defines a unit circle
C centered at the origin of the same plane. The circle is fixed, but the location of the line in the said plane
depends on both the linkage parameters and the input angle w. Fig. 3 depicts the case of two distinct inter-
section points, where N is the normal to L passing through the origin.
Fig. 3. Line and circle in the u–v plane.
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Let the distance of the line to the origin be denoted by d. Apparently, we have the three cases below:

(1) 0 < d < 1: L intersects C at two distinct points, which correspond to two real and distinct solutions of /
for two conjugate postures of the linkage;

(2) d ¼ 1: L is tangent to C, indicating two real and identical solutions of /, which means an extreme posi-
tion of the output link; and

(3) d > 1: L does not intersect C, implying that the input link is a rocker, the prescribed value of w lying
outside the motion capabilities of this link.

The distance d can be readily found to be
d ¼ jCjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p � jCj
S

ð8Þ
whence, in the planar case—recalling the expressions of A and B from Table 1—the denominator S of Eq. (8)
vanishes if and only if
w ¼ 0 and k2 ¼
a1

a2

¼ 1
and hence, a1 ¼ a2, which is a pathological case, meaning that the input and the fixed links are of identical
length and coincident. Moreover, for the quadrilateron to fold—w = 0—under these conditions, we must sat-
isfy the condition, a3 ¼ a4, which then leads to the equality, k1 ¼ k3. Under these conditions, the numerator of
Eq. (8) would also vanish, i.e.,
Cðw; k1; k3Þ ¼ k1 � k3 cos w ¼ k1ð1� cos wÞ ¼ 0
Hence, the condition, S = 0 in Eq. (8) leads to C = 0, which in turn leads to d being indeterminate. By the
same token, for the spherical case, the indeterminacy of d occurs when
w ¼ 0 and k3 ¼ k4
which implies that either a2 ¼ a1 or a2 ¼ a1 þ p. By following a similar reasoning as in the planar case, we have
either a4 ¼ a3 or a4 ¼ a3 þ p, which leads to k1 ¼ �k2. Correspondingly, the value of C is
Cðw; k1; k2Þ ¼ k1 þ k2 cos w ¼ 0
Hence, for both the planar and spherical cases, if S vanishes, then C does as well, and the output angle be-
comes indeterminate. The geometric meaning of this case is that the output and the coupler links coincide
as well, the four-bar linkage thus degenerating into an open two-link, spherical chain, and hence, any value
of / verifies the input–output equation. Notice that this pathological case is not apparent in the quadratic
equation.

Moreover, in this particular case of d-indeterminacy, when A = B = C = 0, the line L disappears for all
values of the output /, and we are left only with the circle, which means that / is free to take any value.

Next, we turn to the general case of two intersections, i.e., with 0 < d < 1. In order to compute the two
conjugate values /1 and /2, we calculate first the intersection of L with its normal N from the origin.
The intersection point has the coordinates ð�u;�vÞ given below:
�u ¼ � AC

A2 þ B2
; �v ¼ � BC

A2 þ B2
ð9Þ
whose denominator cannot possibly vanish, outside of the pathological case identified above. Now, the angle r
between N and the u axis, and the angle h, defined as half the angle subtended by the chord defined by the
intersections of L with C, are given by
r ¼ arctan
�v
�u

� �
; h ¼ arccosðdÞ ð10Þ
and hence, the values of the two output angles are determined as



2 Du
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/1 ¼ r� h; /2 ¼ rþ h; for 0 < d < 1 ð11Þ

Notice that, for d ¼ 1, h ¼ 0 and the above equation yields /1 ¼ /2 ¼ r. When d ¼ 0, r cannot be calculated
from the above expression, but rather as arctanð�1=mÞ, where m is the slope of L. Nevertheless, in this case r
is not needed, for the two conjugate values of the output angle can be calculated directly. Indeed, for this case
we have
/1 ¼ arctan
�A
B

� �
; /2 ¼ /1 þ p; for d ¼ 0 ð12Þ
Finally, for the case d > 1, there is no real solution.
We have thus devised a general algorithm that can be applied to any planar or spherical four-bar linkage.

The algorithm finds the intersections of the line L with the unit circle C, as seen in Fig. 3, which in turn yields
the two conjugate output angles /1 and /2 for a given input angle w.

3. A robust analysis of spatial four-bar linkages

The Principle of Transference will be used to devise a robust algorithm for the I/O analysis of the RCCC
linkage. This principle states that the geometric relations of a spatial linkage can be derived by dualizing the
counterpart relations for a spherical linkage.2 In this process real numbers are substituted with dual numbers.
Since the algebra of dual numbers is well documented in the literature [21], we will not dwell on the funda-
mentals here. The interested reader is directed to the foregoing reference. The algebra of dual numbers was
summarized, its extension to dual vectors recalled, and an outline of its extension to dual matrices proposed
in a tutorial paper [22], which includes examples illustrating the power of dual algebra in kinematics.

3.1. The I/O equation of the RCCC four-bar linkage

By means of the Principle of Transference, one can derive the input–output equation of the spatial four-bar
linkage depicted in Fig. 4, where w and / are included beside angles h1 and h2 of the DH notation. Angles w
and / are measured in exactly the same form as their counterparts in the planar and spherical cases. These
angles follow the relationships of Eq. (2). By simply dualizing the counterpart spherical I/O equation (7a),
we obtain
bAûþ bBv̂þ bC ¼ 0 ð13aÞ

where
û ¼ u� �d4v; v̂ ¼ vþ �d4u; u � cos /; v � sin / ð13bÞ

with d4 denoting the translation of the output cylindrical pair, while � is the dual unit, which has the properties
� 6¼ 0 and �2 ¼ 0. Moreover,
bA ¼ Aþ �A0; bB ¼ Bþ �B0; bC ¼ C þ �C0 ð13cÞ

whose primal parts A, B and C are identical to those of the spherical linkage, their dual parts A0, B0 and C0

being obtained with the aid of computer algebra and the rules of operations with dual numbers, namely,
A0 ¼ amaxðk30cw� kk3sw� k40Þ ð14aÞ
B0 ¼ amaxðk50swþ kk5cwÞ ð14bÞ
C0 ¼ amaxðk10 þ k20cw� kk2swÞ ð14cÞ
in which the Freudenstein parameters are now dual numbers: k̂i ¼ ki þ �ki0, while k is defined as the ratio
k � d1=amax ð14dÞ
alizing is sometimes referred to as ‘‘putting hats’’ on all the variables and parameters in the spherical-linkage equations.



Fig. 4. Spatial RCCC linkage, described with the DH notation.
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with3amax ¼ maxfaig4
1, and ri ¼ ai=amax. Moreover,
3 No
of ama
k10 � �r1sa1ca2ca4 � r2ca1sa2ca4 þ r3sa3 � r4ca1ca2sa4 ð14eÞ
k20 � r1ca1sa2ca4 þ r2sa1ca2ca4 � r4sa1sa2sa4 ð14fÞ
k30 � �r1sa1sa2sa4 þ r2ca1ca2sa4 þ r4ca1sa2ca4 ð14gÞ
k40 � r1ca1ca2sa4 � r2sa1sa2sa4 þ r4sa1ca2ca4 ð14hÞ
k50 � r2ca2sa4 þ r4sa2ca4 ð14iÞ
all being dimensionless. Once we have obtained the input–output equation in terms of dual angles, it is pos-
sible to analyze the RCCC linkage, which allows us, in turn, to compute all the joint rotations and transla-
tions. The input–output equation above can be generally written as
cL : bAûþ bBv̂þ bC ¼ 0 ð15aÞ
and
bC : û2 þ v̂2 ¼ 1 ð15bÞ
where
û ¼ cos /̂; v̂ ¼ sin /̂ ð15cÞ
Eqs. (15a–c) represent a dual line cL and a dual unit circle bC in the dual û–v̂ plane, respectively. Now, it is
possible to decompose the equation of the ‘‘line’’ cL into two real equations, one for its primal, and one
for its dual part, namely,
P : Auþ Bvþ C ¼ 0 ð16aÞ
H : ðA0 þ Bd4Þuþ ðB0 � Ad4Þvþ C0 ¼ 0 ð16bÞ
tice that, in the DH notation, parameters ai are defined as distances, which, by definition, are non-negative. Hence, in the definition

x, absolute values are obviated.



S. Bai, J. Angeles / Mechanism and Machine Theory 43 (2008) 240–251 247
For the circle bC, the dual part vanishes identically, and we are left only with the primal part, namely,
C : u2 þ v2 ¼ 1 ð16cÞ
Eq. (16a) represents a plane P parallel to the d4-axis in the ðu; v; d4Þ-space, while Eq. (16b) represents a hyper-
bolic paraboloid H in the same space. Moreover, Eq. (16c) represents a cylinder C of unit radius and axis
parallel to the d4-axis, all foregoing items being shown in Fig. 5a and b.

The three-dimensional geometric interpretation of Eqs. (16a–c) can be seen in Fig. 5a and b, whereby line
Li, for i ¼ 1; 2, is defined as the intersection of the plane of Eq. (16a) with the cylinder (16c). Moreover, each
line Li intersects the paraboloid (16b) at one single point, as illustrated in Fig. 5b, and as made apparent
below.

The system of Eqs. (16a–c) should be solved for u, v and d4 in order to calculate the two conjugate output
angles and their corresponding output translations. The intersection points P1 and P2 thus yield the two con-
jugate output angles /1 and /2. Once the two conjugate solutions u and v are known, via the coordinates of P1

and P2, the unique value of d4 corresponding to each solution, and defining the intersection points I1 and I2, is
determined from Eq. (16b), namely,
d4 ¼
A0uþ B0vþ C0

Av� Bu
; Av 6¼ Bu ð17Þ
Note that the denominator of Eq. (17) vanishes if Av ¼ Bu; then, as can be readily verified, the numerator of d4

in the above expression vanishes as well, and d4 is indeterminate. In this case, the surface H disappears for all
values of the output translations d4 and we are left with the plane P and the cylinder C, which means that d4 is
free to take any value. That is, the motion of this linkage in the plane normal to its joint axes is independent of
the translations along these axes. We are here in the presence of a parametric singularity producing a degen-
eracy of the linkage, similar to those described for the planar and spherical linkages in Section 2. Under this
singularity, all joint axes are parallel (ai ¼ 0; i ¼ 1; . . . ; 4) and, hence, the coupler and the output links can
freely slide along their cylindrical-joint axes.
3.2. Canonical equation of the hyperbolic paraboloid H

In order to gain insight into the problem geometry, we derive below the canonical equation of H. To this
end, we let
x � ½ u v d4 �T; QðxÞ � A0uþ Bd4uþ B0v� Ad4vþ C0
the Hessian matrix H of QðxÞ then being evaluated as
Fig. 5. Intersections of (a) P and C; and (b) Li and H, for i ¼ 1; 2.
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H � o2Q
ox2
¼

0 0 B

0 0 �A

B �A 0

2
64

3
75
whose eigenvalues are readily computed as
k1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
; k2 ¼ 0; k3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p

The corresponding non-normalized eigenvectors ei, for i ¼ 1; 2; 3, are
e1 ¼
B

�Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
2
64

3
75; e2 ¼

A

B

0

2
64

3
75; e3 ¼

�B

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
2
64

3
75
and hence, the canonical equation of the surface H is of the form:
f ¼ n2

K
� g2

K
; K ¼ 2ðA0Aþ B0BÞ

A2 þ B2
where
n ¼ �
ffiffiffi
2
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p Buþ Avþ d4 þ
A0B� B0A

4ðA0Aþ B0BÞ

� �

g ¼
ffiffiffi
2
p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p Bu� Avþ d4 þ
A0B� B0A
A0Aþ B0B

� �

f ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p Auþ Bvþ ðA
2 þ B2ÞC0A

A0Aþ B0B

� �
which proves that H is indeed a hyperbolic paraboloid.

3.3. The case of d4 acting as input

The motivation behind the algorithm reported here being the need for accommodating manufacturing and
assembly errors in spatial mechanisms [23] and further, in parallel robots with reduced mobility, we include a
case that has been overlooked in the literature. This case pertains to regarding the translational displacement
of the output C joint of a RCCC linkage as input, the two outputs being angles w and /. In this case the prob-
lem no longer leads to a quadratic equation, but rather to a system of one quartic and one quadratic equations
in two variables, as described presently.

Eqs. (16a) and (16b) are both linear in u and v, which allows us to solve for these variables in terms of d4,
namely,
u ¼ uðp; qÞ ¼ �BC0 þ CB0 � CAd4

�AB0 þ BA0 þ B2d4 þ A2d4

ð18aÞ

v ¼ vðp; qÞ ¼ �CA0 � AC0 þ CBd4

�AB0 þ BA0 þ B2d4 þ A2d4

ð18bÞ
where, in light of Eq. (17), d4 is an explicit function of u and v. Moreover, by virtue of Eqs. (14a–c), with
p ¼ cos w and q ¼ sin w, u and v become functions of p and q. The latter, additionally, are subject to
p2 þ q2 ¼ 1 ð19Þ
Substituting the values of u and v given above into Eq. (16c) produces an equation free of u and v or, corre-
spondingly, free of /, namely,
f ðp; qÞ ¼ 0 ð20Þ
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From Table 1 and Eqs. (14a–c), both u and v are rational functions with both numerator and denominator
quadratic in p and q. Hence, u2 and v2 are rational functions with both numerator and denominator quartic
in p and q. Therefore, f ðp; qÞ ¼ 0 leads, after clearing denominators, to a quartic equation in p and q.

The system of polynomial equations (19) and (20) apparently has a Bezout number of 4� 2 ¼ 8.
4. Numerical examples

The proposed algorithm is validated with two numerical examples. All numerical and symbolic calculations
were completed with the aid of Maple 9.0.
4.1. Example 1: The Yang and Freudenstein linkage

The first example is taken from [14], with data as listed in Table 3. The output displacements vs. the input
angle are recorded in Table 4. For conciseness, we list only the results for 0 6 w 6 p. Our results match those
reported in [14], considering the difference of input and output angles in both works, as explained is Section 2.
Moreover, it is noteworthy that only two displacement equations need be solved in our method, as compared
with the system of six equations in six unknowns formulated in [14], within a purely numerical approach. The
Table 3
DH parameters of a RCCC mechanism

Link 1 2 3 4

ai (in.) 5 2 4 3
ai (deg) 60 30 55 45
di (in.) 0 Variable Variable Variable

Table 4
RCCC displacements

w (deg) / (deg) d4 (in.)a d4 (in.)b

Branch 1

0.0 83.7001529991332 �0.1731633276638529 �0.1731633276638444
20.0 68.5965846156616 0.01107737788443084 0.01107737788442875
40.0 64.21379652207564 �0.5291731035884291 �0.5291731035884372
60.0 67.55907288995121 �1.262205014939956 �1.262205014939955
80.0 75.72376607918567 �1.888758473657802 �1.888758473657801
100.0 87.21970036189694 �2.259417486910091 �2.259417486910097
120.0 101.1949771633546 �2.248309754267407 �2.248309754267406
140.0 116.6745933883008 �1.770565940896936 �1.770565940896947
160.0 131.8997403705473 �0.9205435136540786 �0.9205435136540738
180.0 144.2093802647503 �0.1150813700871400 �0.1150813700871402

Branch 2

0.0 276.2998470008668 0.1731633276638416 0.1731633276638416
20.0 254.6701689686606 0.8429100434711766 0.8429100434711502
40.0 235.9479008729766 1.085719205870591 1.085719205870590
60.0 223.0109192021524 0.9378806906156329 0.9378806906156329
80.0 214.5328380596393 0.6631677056813780 0.6631677056813573
100.0 209.1315343183799 0.3676536168092682 0.3676536168092751
120.0 206.1460158532756 0.08437532803790148 0.08437532803790330
140.0 205.6297490641858 �0.1502382490993213 �0.1502382490993197
160.0 208.4003706539843 �0.2203697116995341 �0.2203697116995387
180.0 215.7906197352497 0.1150813700871401 0.1150813700871377

a From the proposed algorithm.
b From Yang and Freudenstein’s algorithm.



Fig. 6. The case of an input translation.

Table 5
Possible values of w and /

[p,q] w (deg) / (deg)

1 [0.6047587377, �0.7964087325] �52.78 [�65.68, �227.07]
2 [�0.9289796338, �0.3701308418] �158.27 [�130.66, �207.99]
3 [0.5819053587, 0.8132565115] 54.41 [66.04, 226.10]
4 [0.8869350365, 0.4618941881] 27.50 [65.79, �113.02]
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matching of the numerical values obtained with the two different methods is remarkable, with differences
appearing only beyond the 10th digit.

4.2. Example 2: Prescribing d4 as input

In the second example, we find the rotations w and / for a given d4 and given dimensions of a RCCC link-
age. The dimensions are the same as those in Example 1, with d4 ¼ 1:0. In this example, Eq. (20) takes the
form:
4 In
A0p4 þ A1ðqÞp3 þ A2ðqÞp2 þ A3ðqÞp þ A4ðqÞ ¼ 0 ð21Þ

where coefficients Ai(q), for i ¼ 0; . . . ; 4, are given below:
A0 ¼ 0:09209746694

A1ðqÞ ¼ �0:06765823468q� 0:0073324502

A2ðqÞ ¼ �0:1754806581q2 þ 0:01487658368q� 0:1902460942

A3ðqÞ ¼ 0:1353164694q3 þ 0:1202907568q2 þ 0:2424947249qþ 0:04203177757

A4ðqÞ ¼ �0:015625q4 � 0:0811898817q3 � 0:020697377q2 � 0:1362382267qþ 0:0484753242
Eq. (21) represents a curve in the p–q plane, whose intersections with the circle of Eq. (18) yield all real roots of
the system at hand. Note, moreover, that all such roots are bound to lie on the above circle. The four real
solutions of the foregoing system are given by the four intersections depicted in Fig. 6. The solutions are listed
in Table 5, including the corresponding angles of rotation.4
this table only p and q are given with 10 digits; all other values are given with only four, for the sake of economy of space.
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5. Conclusions

A robust geometric approach was proposed for solving the input–output equations of planar, spherical and
spatial four-bar linkages. Within this approach, the well-known singularity-prone tan-half-angle transforma-
tion is avoided. This is done by resorting to a geometric representation of the I/O equation of the planar and
spherical four-bar linkages, which leads to the problem of finding the intersection of a line and a unit circle
whose plane contains the line. The dual counterpart of this representation leads to finding the intersections
of three surfaces, a circular cylinder of unit radius, a plane parallel to the axis of the cylinder, and a hyperbolic
paraboloid. The I/O analysis problem associated with RCCC linkages in which the displacement of the output
translation plays the role of input was also included. We showed that the problem of determining angles w and /,
in this case, leads to the intersection of a quartic with a circle. An application of the algorithm reported here to
the robust design of a parallel spherical wrist is to be reported in a forthcoming paper. In that design, the unac-
tuated revolute joints are replaced by their cylindrical counterparts, each leg thus becoming a RCCC linkage.
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