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The forward-displacement analysis of spherical parallel robots (SPRs) is revisited. A robust
approach, based on the input–output (I/O) equation of spherical four-bar linkages, is pro-
posed. In this approach, the closed-loop kinematic chain of a SPR is partitioned into two
four-bar spherical chains, whose I/O equations are at the core of the analysis reported here.
These equations lead to a trigonometric equation in the joint angles, which is solved semi-
graphically to obtain the joint variables for the determination of the moving plate orienta-
tion. Examples are included to demonstrate the application of the method.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Spherical parallel robots (SPRs) are intended to provide three degrees of freedom of pure rotation. These robots have been
used for applications such as camera-orienting and medical-instrument alignment [1–3]. Extensive studies have been re-
ported for spherical parallel robots in a variety of relevant problems covering workspace modeling [4], dexterity evaluation
[5], design and optimization [6–8], singularity analysis [9], and type synthesis [10], among others.

The forward-displacement analysis (FDA) of SPRs is concerned with finding the orientation of the mobile platform corre-
sponding to a given set of actuated-joint-variable values. Due to their multi-loop architecture, the FDA of SPRs, in general,
does not allow for closed-form solutions. Moreover, the nonlinear system of trigonometric equations implies a high compu-
tational complexity. It is noted that a SPR admits at most eight solutions, as reported in [11,12]. All solutions stem from the
roots of an eighth-order polynomial equation, what is known as the robot characteristic equation.

Fig. 1 depicts two common types of SPRs, namely, 3-RRR and 3-UPU, where R, U, and P stand for revolute, universal, and
prismatic joints, respectively. A SPR of the 3-RRR type has three legs, numbered from 1 to 3, each having two links and three
revolute joints. The axes of all joints intersect at a common point, which is called the center of the mechanism. A method for
the kinematics of SPRs consisting of revolute joints was reported by Gosselin et al. [12]. In this method, the orientation of the
end-effector is described by means of Euler angles. Solutions in the form of an eighth-order polynomial equation were found.
A similar solution was reported by Huang and Yao [13], who regarded the direction cosines of each joint axis as functions of
the actuated-joint variables. In addition, Alizade et al. [14] investigated the spherical parallel robot with revolute joints,
wherein a specific architecture was considered that lends itself to closed-form solutions.
. All rights reserved.
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Fig. 1. Spherical parallel robots: (a) 3-RRR type, and (b) 3-UPU type.
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For a SPR of the 3-UPU type,1 as shown in Fig. 1b, the base and mobile platforms are connected through a spherical joint,
located at O, the center of the robot. Three actuators for the three prismatic joints control the orientation of the end-effector. For
this type of robot, Innocenti and Parenti-Castelli [11] derived a system of two equations, one eighth-order polynomial and one
linear equation. In the work of Ji and Wu [15], the FDA of spherical parallel robots with prismatic joints with identical pyramids
was studied by resorting to three closure equations.

It is noted from the literature that most studies were conducted for only one type of SPR, which is either 3-RRR or 3-UPU.
While the kinematics solutions are mostly based on the closure equations of single legs, lengthy symbolic coefficients are
involved in the kinematic equations.

In this paper, the problem of the FDA of SPRs is revisited with the aim of finding a robust method of forward-displacement
analysis. A method applicable to the kinematics of spherical four-bar linkages is extended to SPRs. In the method, such a
robot is considered as a multi-loop linkage made up of two spherical four-bar chains, rather than three individual legs in
parallel. This approach benefits the FDA in three respects: (i) it leads to FDA equations with compact coefficients; (ii) the
FDA equations can be solved semigraphically, which enhances the robustness of the analysis; and ðiiiÞ it is applicable to
the above two types of SPR, 3-RRR and 3-UPU.

2. Problem statement

The proposed method is developed for SPRs with revolute joints. To this end, Fig. 1a is redrawn, as shown in Fig. 2, includ-
ing the notation used throughout the paper. In the figure, the orientation of the axes of all joints is denoted by the unit vec-
tors ui; vi, and wi, for i ¼ 1;2;3. The coordinate system is selected such that the origin is located at the center of the
mechanism, while the z-axis is normal to the bottom surface of the fixed pyramid and points upwards. The y-axis is orthog-
onal to the z-axis and lies in the plane made by the z-axis and u1. Moreover, the dimensions of the proximal links, connected
to the base platform, and the distal links, connected to the mobile platform, are assumed to be a1 and a2, respectively2. Let
the input joint angles be hi; i ¼ 1;2;3, which are measured from the plane made by the z-axis and ui to the plane of a proximal
link. For the closed chain of the spherical parallel robot, we have3
1 UPU
joint of

2 All
3 Wit
wi � vi ¼ cos a2; i ¼ 1;2;3 ð1Þ

An objective of the FDA is to find vectors vi. Different approaches are available for this purpose, as recalled below:

� Using the three unit vectors of the mobile platform as unknowns
In this approach, the problem involves nine unknowns. Besides Eq. (1), additional equations are needed, which are
vi � vj ¼ cos a3; i; j ¼ 1;2;3; i – j ð2Þ

where a3 is the angle between the axes of the ith and jth distal joints. The angle a3, defined by the lateral edges of the
mobile pyramid, takes the value a3 ¼ 2 sin�1½sin b cosðp=6Þ�; a3 2 ð0;p�. Moreover, vectors vi obey

kvik ¼ 1 ð3Þ
kinematic chains can be regarded as SPS, UPS, or SPU chains as well, with S standing for spherical joints. This is possible because the extra revolute
a S joint becomes idle in this array.
leg-chains are assumed identical for brevity, but the method is equally applicable to general architectures.
h nonidentical links, Eq. (1) becomes wi � vi ¼ cos a2;i .



Fig. 2. Kinematic model of a spherical parallel robot.
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Eqs. (1)–(3) form a system of three linear and six quadratic equations of vectors vi, from which possible values of vi can be
found. This is a general approach in dealing with the FDA of SPRs. However, the Bezout number of the system of equations
is 64ð¼ 26Þ, which implies a high computational complexity.

� Using the Euler angles of the mobile platform as unknowns
The unit vectors vi can be expressed by
vi ¼ Qv�i ð4Þ

where Q is the rotation matrix and v�i is the unit vector counterpart of vi, as expressed in mobile-platform coordinates. If
the orientation of the mobile platform is described by the array of Euler angles u ¼ ½u1;u2;u3�

T , then the rotation matrix
is

Q i ¼ Q iðuÞ ð5Þ

the system of three Eq. (1) thus having three unknown Euler angles. In [12], the coordinate system fixed to the mobile
platform was carefully selected to simplify the equations: the z-axis was aligned with the shaft axis of a joint connecting
the mobile platform and a distal link, for which one Euler angle is identical to the arc subtended by the mid-curve of the
distal links. The solution is given by the roots of an octic polynomial equation.

� Using the actuated-joint angles as unknowns
This approach, adopted in [13], makes use of one of the three legs, for example, leg 1, for the expression of unit vectors vi,
which are functions of the joints angles, i.e.,
vi ¼ Riðh1;/1;w1Þv�i ð6Þ

For the FDA problem with known h1, only two unknowns per leg are present. By combining Eq. (1) for legs 2 and 3, a sys-
tem of two equations for two variables is established. These equations lead finally to an octic polynomial equation.

Unlike the above methods, which directly rely on the single-leg Eq. (1), the method proposed here resorts to the input–
output (I/O) equation of spherical four-bar linkages, upon consideration that the I/O equation is actually a combination of
two closure equations of single individual legs. In this way, loop equations with compact coefficients can be expected, which
may lead to less calculations and an enhanced robustness of the displacement analysis. Moreover, as shown in [16], the in-
put–output equations of planar and spherical four-bar linkages can be expressed by a unified equation. Furthermore, because
a SPR with prismatic joints is kinematically equivalent to a SPR with revolute joints, the method proposed here applies to the
latter as well.

3. Forward-displacement analysis

In this section, we formulate the FDA equation in terms of the I/O equations of two spherical four-bar linkages.

3.1. I/O equation of a spherical four-bar linkage

The derivation of the I/O equation of spherical four-bar linkages is well documented in the literature [17,18]. We resort to
the method proposed by Wampler [18], which we recall below for completeness.

Wampler’s method is generally applicable to multi-loop spherical linkages. The idea is that the travel along a loop of a
spherical mechanism consists of two types of rotations, namely, joint rotations and side rotations. The latter, which describe



Fig. 3. The spherical four-bar loop: coordinate frames are established following D–H convention.
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the relative orientation of every neighboring pair of joint axes of a link, are constant, while the former are variable. Referring
to Fig. 3, the loop equation of the four-bar spherical linkage can be expressed as
Z4S4Z1S1Z2S2Z3S3 ¼ I ð7Þ
where I is the 3� 3 identity matrix, while joint rotations are Z1 ¼ Rzð/Þ; Z2 ¼ Rzðp� wÞ; Z3 ¼ Rzðh3Þ, and Z4 ¼ Rzðh4Þ, with
Rzð�Þ ¼
cosð�Þ � sinð�Þ 0
sinð�Þ cosð�Þ 0
0 0 1

2
64

3
75
Moreover, side rotations are Si ¼ RxðaiÞ; i ¼ 1; . . . ;4, with
Rxð�Þ ¼
1 0 0
0 cosð�Þ � sinð�Þ
0 sinð�Þ cosð�Þ

2
64

3
75
Algebraic manipulation of Eq. (7) yields
zT S4Z1S1Z2S2z ¼ zT ST
3z ð8Þ
with z ¼ ½0;0;1�T . Expanding Eq. (8) leads to
k1 þ k2 cos wþ k3 cos w cos /� k4 cos /þ k5 sin w sin / ¼ 0 ð9aÞ
where
k1 � ca1ca2ca4 � ca3; k2 � sa1sa2ca4; k3 � ca1sa2sa4; k4 � sa1ca2sa4; k5 � sa2sa4 ð9bÞ
and ai denotes the ith-link dimension, the notation being valid for Fig. 3 only.
Introducing �/ ¼ p� /, the I/O equation with the fw; �/g pair can be written as
k1 þ k2 cos w� k3 cos w cos �/þ k4 cos �/þ k5 sin w sin �/ ¼ 0 ð9cÞ
3.2. I/O equations for SPRs

A SPR essentially consists of several spherical loops. Two loops of spherical four-bar linkages, namely, A1C1C2A2 and
A1C1C3A3, are selected for the ensuing analysis. Both loops have known link dimensions, if we consider arcs and
as virtual links. For simplicity, the three legs have been assumed identical, i.e., a2;1 ¼ a2;2 ¼ a2;3 ¼ a2. The two loops selected
in Fig. 4 fully determine a configuration of the SPR. Based on Eq. (9c), the I/O equation of the closed loop A1C1C2A2 with I/O
pair fw;/g is
ca2ca3ca4 � ca2 þ sa2sa3ca4cw� ca2sa3sa4cwc/þ sa2ca3sa4c/þ sa3sa4sws/ ¼ 0 ð10aÞ
where a4 ¼ \C1OC2 ¼ cos�1ðw1 �w2Þ; a4 2 ð0;p�. Eq. (10a) can be cast in the general form
A1ð/Þcwþ B1ð/Þswþ C1ð/Þ ¼ 0 ð10bÞ



Fig. 4. Two spherical chains within a SPR with only leg 1 fully shown for clarity.
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where
A1 ¼ sa2sa3ca4 � ca2sa3sa4c/ ð10cÞ
B1 ¼ sa3sa4s/ ð10dÞ
C1 ¼ ca2ca3ca4 � ca2 þ sa2ca3sa4c/ ð10eÞ
Likewise, the I/O equation for the A1C1C3A3 chain, with the I/O pair f�/; �wg, is obtained as
ca2ca5c�a3 þ sa2sa5c�a3c�/� ca2sa5s�a3c�/c�w� ca2 þ sa2ca5s�a3c�wþ sa5s�a3s�/s�w ¼ 0 ð11aÞ
where cos �a3 ¼ v1 � v3, �a3 2 ð0;p�. Moreover, cosa5 ¼ w1 �w3 and sin a5 ¼ kw1 �w3k. The geometry of the SPR leads to the
identities
�/ ¼ 2p� /� r; �w ¼ 2p� w� l ð11bÞ
where r is the dihedral angle between the planes C1OC3 and C1OC2, and l is the spherical angle at vertex A1. In the case of a
mobile platform with an equilateral-triangular shape, l takes the value
l ¼ cos�1½csc2a3ðcos a3 � cos2 a3Þ�; l 2 ð0;p� ð11cÞ
Substituting Eq. (11b) into Eq. (11a) and simplifying the equation thus resulting yields
A2ð/Þcwþ B2ð/Þswþ C2ð/Þ ¼ 0 ð11dÞ
with coefficients
A2 ¼ �ca2sa5s�a3crclc/þ ca2sa5s�a3srcls/þ sa2ca5s�a3clþ sa5s�a3crsls/þ sa5s�a3srslc/ ð11eÞ
B2 ¼ ca2sa5s�a3crslc/� ca2sa5s�a3srsls/� sa2ca5s�a3slþ sa5s�a3crcls/þ sa5s�a3srclc/ ð11fÞ
C2 ¼ ca2ca5c�a3 � ca2 þ sa2sa5c�a3crc/� sa2sa5c�a3srs/ ð11gÞ
3.3. Semigraphical equation solving

Both Eqs. (10b) and (11d) are linear in ½cos w; sin w�T , whence
cos w ¼ 1
D
ðB1C2 � B2C1Þ; sin w ¼ 1

D
ðA1C2 � A2C1Þ; D � A1B2 � A2B1 ð12Þ
Below we consider two cases, depending on the vanishing of the denominator appearing in Eq. (12).

3.3.1. General case
Assuming D – 0 and adding sidewise the squares of Eq. (12) yields
C2
2A2

1 þ 2A2B2A1B1 � 2A2C2A1C1 þ C2
2B2

1 � A2
2B2

1 � 2B2C2B1C1 � B2
2A2

1 þ A2
2C2

1 þ B2
2C2

1 ¼ 0 ð13Þ
which, in light of Eq. (11e–g), involves powers of sin / and cos / only. The real roots of the equation can be obtained semi-
graphically, as described presently.

Substituting x ¼ cos / and y ¼ sin / into Eq. (13) yields
f ðx; yÞ ¼ 0 ð14Þ
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which is a quartic equation in ðx; yÞ. Moreover, x and y are subject to the constraint
x2 þ y2 ¼ 1 ð15Þ
To solve the system of Eqs. (14) and (15) semigraphically, first the two equations are plotted and all intersections are esti-
mated by inspection. There are at most eight intersections, which yield as many rough estimates fx̂i; ŷig8

1 of the solutions.
Second, the rough estimates are submitted as initial guesses to a nonlinear-equation solver for accurate solution.

It is noted that Eq. (13) can also be solved by making use of the tan-half identities, as reported in [12], which yields an
octic polynomial, the robot characteristic polynomial, namely,
X8

i¼0

Niti ¼ 0; t ¼ tanð/=2Þ ð16Þ
whose coefficients Ni appear in terms of all known parameters. However, the computation with tan-half identities becomes
ill-conditioned if /! p [19], which leads to t !1. For this reason, we resort to the semigraphical method, as described
above.

It is worth comparing this method with that reported in [12] and highlight their differences. While both methods yield a
trigonometric equation of the form of Eq. (13), they involve totally different expressions for its coefficients. The method re-
ported here, utilizing the I/O Eqs. (10b) and (11d), leads to the compact coefficients displayed in Eqs. (10c–e) and (11e–g).
Taking the coefficient A1 as an example, this consists of only two terms in our method, while its counterpart in [12] consists
of 29 terms of trigonometric products, namely,
ðA1Þ½12� ¼ �
ffiffiffi
3
p

2
sa1cc1ch2sh1ca1sa3ca2c/1 �

3
2

scðca1Þ2ccch1sa3ca2c/1 �
ffiffiffi
3
p

2
ðsa1Þ2sh2scsa3ca2c/1

� 1
2

sa1sh2sh1ca1sa3ca2c/1 �
ffiffiffi
3
p

2
scðca1Þ2sh1sa3ca2c/1 � ðccÞ

2ca1sa1sa3ca2c/1

þ
ffiffiffi
3
p

2
sa1sh2ccch1ca1sa3ca2c/1 þ

1
2
ðscÞ2ca1sa1sa3ca2c/1 �

1
2

sa1ðccÞ2ch2ch1ca1sa3ca2c/1

þ ðscÞ2ch2sa1ch1ca1sa3ca2c/1 þ
3
2
ðsa1Þ2ccch2scsa3ca2c/1 �

ffiffiffi
3
p

2
sa1ccch2ch1sa3ca2s/1

� 1
2

sa1sh2ch1sa3ca2s/1 þ
1
2

sa1ðccÞ2ch2sh1sa3ca2s/1 þ
3
2

scca1ccsh1sa3ca2s/1

�
ffiffiffi
3
p

2
scca1ch1sa3ca2s/1 �

ffiffiffi
3
p

2
sa1sh2cc1sh1sa3ca2s/1 � ðscÞ

2ch2sa1sh1sa3ca2s/1

þ 3
2

scca1ccch1sa1sa2sa3 �
ffiffiffi
3
p

2
sa1sh2sc1ca1sa2sa3 �

ffiffiffi
3
p

2
ðsa1Þ2sh2ccch1sa2sa3

þ 1
2
ðscÞ2ðca1Þ2sa2sa3 þ

3
2

sa1ccch2scca1sa2sa3 � ðcc1Þ
2ðca1Þ2sa2sa3 þ

ffiffiffi
3
p

2
ðsa1Þ2ccch2sh1sa2sa3

þ 1
2
ðsa1Þ2ðcc1Þ

2ch2ch1sa2sa3 þ
ffiffiffi
3
p

2
scca1sh1sa1sa2sa3

þ 1
2
ðsa1Þ2sh2sh1sa2sa3 � ðscÞ2ch2ðsa1Þ2ch1sa2sa3 ð17Þ
which was derived for a SPR of symmetric architecture with identical legs. Coefficients B1;C1;A2;B2 and C2 of Eqs. (10d&e)
and (11e–g), respectively, bear 1, 3, 5, 5, and 4 terms, respectively, of trigonometric products in our method, compared with
18, 36, 47, 49, and 35 terms for their counterparts in [12]. As a matter of fact, the coefficients in [12] are so long that they
were not included in that paper. Compact coefficients not only facilitate implementation, but also enhance the accuracy of
computations, as the number of flops is dramatically reduced.

Once the real roots of Eq. (13) are found, the corresponding solutions of w are uniquely determined through Eq. (12).
Moreover, the three vectors v1;v2, and v3 can be readily calculated from Eq. (4), in which the rotation matrix now becomes
Q ¼ Rxðc� p=2ÞRzðh1ÞRxða1ÞRzðp� /1ÞRxða2ÞRzðwÞ ð18Þ
where
/1 ¼ /þ /0 ð19Þ
with /0 denoting the dihedral angle between the C1OC2 and C1OB1 planes, which can be found unambiguously from the
relations
cos /0 ¼ na � nb; sin /0 ¼ kna � nbk ð20Þ
with
na ¼
w3 �w1

kw3 �w1k
; nb ¼

u1 �w1

ku1 �w1k
ð21Þ
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3.3.2. Particular case
As shown in [16], the vanishing of the denominator of Eq. (12) leads to C1 ¼ C2 ¼ 0, the right-hand sides of the first two of

Eq. (12) thus leading to an indeterminacy. In fact, the vanishing of C1 and C2 also leads to the vanishing of the denominator D
of Eq. (12). To find solutions of w and / in this case, we let Eq. (14) take the form of the condition itself, i.e., D ¼ 0, which leads
to solutions of / by following the same semigraphical approach. These solutions will be substituted into one of the two Eqs.
(10b) and (11d) to obtain a linear homogenous equation in sin w and cos w, each equation leading to two values of w.

As shown in the examples, an interesting particular case is that in which the robot has identical proximal and distal links.
In this case, an architectural singularity occurs, as the four-bar linkage becomes foldable [20]. Moreover, the link dimensions
are identical to the angles made by adjacent joint axes on the mobile platform.

So far, we have developed a method for the FDA solutions of SPRs with revolute joints. Note that the method developed is
readily applicable to SPRs with prismatic joints, once they are converted to their equivalent models with revolute joints, as
described in Appendix A.

4. Examples

We include three examples to demonstrate the application of the method reported here in determining the orientation of
the mobile platform and the analysis of the assembly modes of SPRs. The FDA of a robot prototype is also included.

4.1. Example 1: Determination of the directions of the joint axes

This example is given for the SPR with three identical legs and dimensions given as a1 ¼ 45	; a2 ¼ 90	; b ¼ 60	 and
c ¼ 45	, with reference to Fig. 2. The input angles are h1 ¼ 105	; h2 ¼ 60	 and h3 ¼ 105	. Each input angle is measured from
the plane made by the z axis and ui.

In determining the unit vectors vi of the joint axes on the mobile platform, we need first to find all unit vectors ui and wi.
The unit vectors ui for the revolute joints on the base platform are readily given as:
ui ¼ ½� singi sin c; cos gi sin c; � cos c �T ; i ¼ 1;2;3 ð22Þ
where gi is the angle measured from the plane made by the z axis and u1 to the plane made by the z axis and ui. As the SPR
has a symmetric structure, gi ¼ 2ði� 1Þp=3.

Each unit vector wi; i ¼ 1;2;3, is a function of the corresponding actuated-joint angle, which can be expressed as
wi ¼ wiðhiÞ ð23Þ
An explicit expression of wi is
wi ¼
�sgiscca1 þ ðcgishi � sgiccchiÞsa1

cgiscca1 þ ðsgishi þ cgiccchiÞsa1

�ccca1 þ scchisa1

2
64

3
75 ð24Þ
With fixed dimensions and the joint angles hi, for i ¼ 1;2;3, given above, the unit vectors wi are calculated first through Eq.
(24). The values of a4 and a5 are found as a4 ¼ 2:024 rad and a5 ¼ 1:514 rad. Once all the dimensions of the two closed-loop
chains are known, Eq. (14) becomes
0:012174x4 þ 0:0030528x3y� 0:75454x2y2 � 0:16791xy3 þ 0:0031315y4 þ 0:0012876x3 þ 0:094285x2y

þ 0:040248xy2 þ 0:0035373y3 � 0:0035850x2 þ 0:066951xyþ 0:010187y2 � 0:0048985x� 0:0014952y

� 0:0016159 ¼ 0 ð25Þ
where x ¼ cos /; y ¼ sin /. The curve defined by this equation and the unit circle are displayed in Fig. 5. The eight intersec-
tions lead to the eight solutions of ½cos /; sin /�T . Based on the estimated coordinates of the intersecting points, more accu-
rate results were obtained with the nonlinear-equation solver available in Maple 10. It is noted that the dashed curves in
Fig. 5 are plots of A1B2 � A2B1 ¼ 0. It is also noted that there are no common points between this curve and the eight solu-
tions, which means that the right-hand sides of Eq. (12) are computed safely.

With the eight values of /, the corresponding solutions of w are further found through Eq. (12). The eight pairs of values of
w and / are recorded in Table 1. The angle of the middle joint at leg 1 is then determined from Eq. (19). The unit vectors vi are
finally calculated via Eqs. (4) and (18), and recorded in Table 2.

The computation error is defined as
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

24

X8

j¼1

X3

i¼1

½wi � við/j;wjÞ � cos a2�2
vuut ð26Þ
The error with the reported method is 4:5� 10�6, while the error with the method in [12] is found as 9:1� 10�6. The
improvement here is not dramatic, but still noticeable.



Fig. 5. Curve plot to find eight intersections.

Table 1
The eight real solutions of Example 1.

No. 1 2 3 4 5 6 7 8

w [rad] 1.52083 2.6818 �0.485793 �1.79311 1.34851 �2.69801 0.438398 �1.58601
/ [rad] �3.04028 �1.62406 �1.36202 �0.0190524 0.237828 1.46761 1.76812 3.00891

Table 2
The eight forward-displacement solutions of Example 1.

No: vT
1 vT

2 vT
3

1 [0.72606, �0.43833, 0.52981] [0.021926, 0.88458,0.46583] [�0.77283, �0.38699, 0.50298]
2 [0.03320, �0.87656, �0.48006] [�0.29015, �0.35510, 0.88866] [�0.90301, 0.28461, �0.32176]
3 [�0.15699, �0.76706, �0.62198] [0.28844, 0.66362, �0.69024] [0.91383, �0.27000, 0.30330]
4 [�0.73034, 0.33682, �0.59424] [�0.06608, 0.71447, 0.69650] [0.76616, 0.39220, �0.50905]
5 [�0.70846, 0.54568, �0.44752] [0.06607, �0.71449, �0.69650] [�0.60086, �0.49359, 0.62874]
6 [�0.06955, 0.89082, 0.44903] [�0.29376, �0.55540, 0.77796] [0.98460, �0.12493, 0.12199]
7 [0.14878, 0.77306, 0.61662] [0.29378, 0.45310, �0.84165] [�0.98370, 0.12812, �0.12596]
8 [0.72469, �0.23653, 0.64717] [�0.010662, �0.86701, �0.49807] [0.56997, 0.50807, �0.64575]
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4.2. Example 2: analysis of assembly modes

The FDA is needed in the analysis of assembly modes. In this example, the eight assembly modes are examined with the
FDA solutions. The SPR shown in Fig. 6 is a special robot with coaxial input shafts, which means c ¼ 0. Moreover,
u1 ¼ u2 ¼ u3 ¼ ½0;0;1�T . This SPR features unlimited rolling, which makes the SPR capable of being used as an actuated
spherical joint in robotic applications [21].

The dimensions of the SPR are given as a1 ¼ 45	; a2 ¼ 90	, and b ¼ 60	. At the initial position with the angular displace-
ments of all input shafts equal to zero, i.e., hi ¼ 0; i ¼ 1;2;3, the eight solutions of the forward-displacement problem are
found as listed in Table 3. Based on these solutions, all eight postures are displayed in Fig. 7. We calculated for each posture
the conditioning index CI, which is defined as the reciprocal of the condition number of the Jacobian J [22], i.e.,
CI ¼ 1=j ¼ 1=ðkJ�1kkJkÞ ð27Þ
where k � k denotes the Frobenius norm of J, namely,
kJk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðJT WJÞ

q
ð28Þ
with W ¼ ð1=3ÞI, and I having been defined earlier as the 3� 3 identity matrix.



Fig. 6. Model of a spherical parallel robot with coaxial input shafts.

Table 3
Eight forward-displacement solutions for Example 2.

No. vT
1 vT

2 vT
3

1 [�0.6494,�0.5377,�0.5377] [0.76948,�0.06107,�0.63575] [0.28874,�0.73259,0.61635]
2 [�0.70711,0.5,0.5] [�0.079461,�0.86235,0.49999] [0.78656,0.36233,0.50003]
3 [�0.4901,0.61635,0.61635] [0.33185,0.69686,�0.6358] [�0.79038,�0.29356,�0.53772]
4 [0.4901,0.61635,0.61635] [0.79038,�0.29356,�0.53772] [�0.33183,0.69686,�0.6358]
5 [�0.43757,�0.6358,�0.6358] [�0.77886,0.11627,0.61633] [�0.14094,0.83129,�0.53769]
6 [0.43758,�0.6358,�0.6358] [0.1409,0.83127,�0.53771] [0.77885,0.11627,0.61633]
7 [0.64949,�0.53765,�0.53765] [�0.28873,�0.73261,0.61633] [�0.76941,�0.06112,�0.6358]
8 [0.7071,0.5,0.5] [�0.78658,0.36239,0.49997] [0.079402,�0.86236,0.50008]

Fig. 7. Eight postures of a SPR with coaxial input shafts, as produced by h1 ¼ h2 ¼ h3 ¼ 0.

2212 S. Bai et al. / Mechanism and Machine Theory 44 (2009) 2204–2216
The Jacobian matrix of SPRs can be obtained upon differentiation of Eq. (1), which gives
_wi � vi þwi � _vi ¼ 0 ð29aÞ



Table 4
Conditioning indices (CI) of the eight postures for Example 2.

Posture a b c d e f g h

CI 0.821 0.982 0.821 0.821 0.821 0.821 0.821 0.982

Fig. 8. Prototype of the Agile Wrist.
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Fig. 9. Curve plot to find the solutions of a particular case.

Table 5
Eight forward-displacement solutions for Example 3.

No. vT
1 vT

2 vT
3

1 [0.27657,0.12704,0.95259] [0.54651,0.79457,�0.26459] [�0.79047,0.59378,0.15034]
2 [0.27657,0.12704,0.95259] [�0.54652,�0.79457,0.26459] [0.79047,�0.59379,�0.15034]
3 [0,�0.81649,0.57736] [0.7071,0.40826,0.57738] [�0.70712,0.40825,0.57737]
4 [0,�0.81649,0.57736] [�0.70711,�0.40826,�0.57738] [0.7071,�0.40826,�0.57737]
5 [�0.27656,�0.1269,�0.95264] [�0.54654,�0.79459,0.26453] [�0.79046,0.5938,0.15038]
6 [�0.27656,�0.1269,�0.95264] [0.54653,0.79459,�0.26453] [0.79046,�0.59379,�0.15039]
7 [0,0.81649,�0.57737] [�0.70711,�0.40827,�0.57738] [�0.7071,0.40826,0.57737]
8 [0,0.81649,�0.57737] [0.7071,0.40827,0.57738] [0.70712,�0.40825,�0.57737]
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Note that
_vi ¼ x� vi; _wi ¼ ui �wi
_hi; ð29bÞ



Fig. 10. Two possible configurations of the Agile Wrist: (a) a regular configuration and (b) a singular configuration.
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where x is the angular-velocity vector of the mobile platform. Eq. (29a and b) lead to
Jx ¼ _h ð30Þ
where
J ¼ ½j1; j2; j3�; ji ¼
wi � vi

ðui �wiÞ � vi
ð31Þ
The conditioning indices of all assembly modes are shown in Table 4. It is found that postures (b) and (h) have an identical
conditioning index, which is equal to 0.982, larger than the other configurations. In view of this, the home posture can be
selected as one of the two modes, (b) and (h).

The method was also used for the FDA of a SPR with prismatic joints, taking data from the example given in [11]. FDA
solutions were obtained that are in full agreement with the results reported in [11].

4.3. Example 3: FDA of the agile eye/wrist

In this example, we apply the method developed here to the FDA of the Agile Wrist, a spherical parallel robot developed at
the Centre for Intelligent Machines, McGill University, as shown in Fig. 8. The kinematic chain of the Agile Wrist was bor-
rowed from the design of the Agile Eye, developed at Laval University in Quebec City [1]. The robot was redesigned in order
to enhance its load-carrying capacity, while minimizing its weight [23,24].

The dimensions of the Agile Wrist are a1 ¼ a2 ¼ p=2, all three legs being identical. Moreover, the three unit vectors ui are
mutually orthogonal, vectors vi; i ¼ 1;2;3, following suit. It can be found from Eqs. (10e) and (11g) that C1 ¼ C2 ¼ 0, which
implies D ¼ 0. Hence, the method of (3.3.2) applies. A FDA example is given for h1 ¼ 3p=5; h2 ¼ p=3; h3 ¼ 7p=12. The plot for
Eq. (14) is shown in Fig. 9. Altogether, eight forward-displacement solutions are found, as recorded in Table 5. Of them, four
corresponding configurations are regular, four are singular. Two configurations, one regular and one singular, are shown in
Fig. 10. For singular configurations, the angles of rotation of the middle joints are either zero or 180	, the axes of the revolute
joints at the mobile platform are thus parallel to their counterparts on the fixed platform. Hence, the rotations of the input
shafts cannot control the orientation of the mobile platform. This type of singularity is the input singularity discussed in [20].
For this reason, the four singular solutions can be identified by means of the singularity of the relevant Jacobian. In the given
example, solutions 3, 4, 7 and 8 are singular.

It is noted that the singular solutions correspond to the pathological cases of four-bar linkages [16], if we look at the loops
of the mechanism. Due to the special nature of the solutions, the method reported in [12] is not applicable to this example. It
is also noted that these singular solutions are the trivial solutions analyzed in [25].

5. Conclusions

The forward-displacement analysis of spherical parallel robots was revisited in this paper. A robust method to determine
the orientation of the end-effector is developed using the I/O equations of spherical four-bar linkages. With the proposed
method, the FDA equations are derived with compact coefficients, which leads to a robust procedure. Moreover, a semi-
graphical method is applied to equation-solving, which contributes to the robustness of the displacement analysis. The
method is able to handle general FDA cases as well as particular cases involving singularities.

Examples are included to demonstrate the application of the proposed method. The improvement of calculation accuracy
is noticeable. The method can be used in the forward-displacement analysis and the working-mode analysis of SPRs



Fig. 11. Equivalent revolute-coupled chain of a SPR with prismatic joints.

S. Bai et al. / Mechanism and Machine Theory 44 (2009) 2204–2216 2215
consisting of different types of joints. The method should also be applied to the FDA of other types of parallel robots for
which input–output equations of similar forms can be established.

Appendix A. The FDA of SPRs with P-joints

A SPR with prismatic joints is kinematically equivalent to a revolute-coupled SPR. Fig. 11 shows the equivalent model of
the SPR of Fig. 1bb. Dimensions ai; i ¼ 1;2;3, are found from relations
cos ai ¼
r2

a;i þ r2
b;i � l2

i

2ra;irb;i
; ai 2 ð0;p�; i ¼ 1;2;3 ð32Þ
while a4 and a5 are angles pertaining to the mobile and fixed pyramids, respectively. Moreover, ra;i and rb;i are the lengths of
AiO and BiO, respectively, for the original model depicted in Fig. 1b.

Two loops, A1B1B2A2 and A1B1B3A3, as shown in Fig. 11 are selected for the analysis. With reference to Eq. (9c), the I/O
equations of the two loops are
A1ð/Þcwþ B1ð/Þswþ C1ð/Þ ¼ 0 ð33aÞ
A2ð/Þcwþ B2ð/Þswþ C2ð/Þ ¼ 0 ð33bÞ
with coefficients
A1 ¼ sa1ca5sa4 � ca1sa5sa4c/; B1 ¼ sa5sa4s/; C1 ¼ ca1ca5ca4 � ca2 þ sa1sa5ca4s/ ð33cÞ
A2 ¼ �ca1sa5sa4crclc/þ ca1sa5sa4srcls/þ sa1ca5sa4clþ sa5sa4crsls/þ sa5sa4srslc/ ð33dÞ
B2 ¼ ca1sa5sa4crslc/� ca1sa5sa4srsls� sa1ca5sa4slþ sa5sa4crcls/þ sa5sa4srclc/ ð33eÞ
C2 ¼ ca1ca5ca4 � ca3 þ sa1sa5ca4crc/� sa1sa5ca4srs/ ð33fÞ
It is noted that Eqs. (33a) and (33b) have the same gestalt as Eqs. (10b) and (11d). Thus, the procedure applied to the 3-RRR
SPR can be followed here to obtain all real solutions. Upon finding these solutions, first for /, and then for w, the unit vectors
vi are readily calculated.
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