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Abstract An essential problem in developing concentric-tube continuum robots is to
determine the shape of the robot, which is dependent on robot structure and external
load. A comprehensive model that takes into considerations of influencing factors is
hence required. In this work, the shape modeling of a type of concentric-tube con-
tinuum robot built with a collection of super-elastic NiTiNol tubes is studied. The
model, developed on the basis of differential geometry and curved beam theory, is
able to determine both the bending deflection and torsional deformation for a con-
tinuum robot of continuous curvature. Simulation results for calculating the shape
of a continuum robot built with NiTiNol tubes are included.

Key words: Kinematics of flexible manipulators, continuous-curvature continuum
robots, shape modeling, NiTiNol tubes

1 Introduction

Continuum robots encompass new principles of robot inspired by the nature. A con-
tinuum robot is a robot that is able to deform continuously, similar to their coun-
terparts in nature such as snakes, elephant trunks or octopus arms. The continuum
robots are able to move in any direction, both laterally and axially, or even ’turning
corner’. Contrary to traditional robots built with rigid links, a continuum robot is
constructed with a collection of flexible structures which allow them deform locally
to generate desired motion.

The continuum robots can be built with different principles, as seen in some
prototypes including multi-sectional pneumatic actuating robot Air-Octor[1], fluid-
driven Octpus Arm[2], tendon-driven robots[3], among others. Of these robots,
robots with concentric tubes of NiTiNol (Nickel-Titanium) alloy are more promis-
ing for applications where a super mobility in a confined space is critical, such as
the robotic minimally invasive surgery, due to the relative simple structure, compact
size (diameters can be as small as a few millimeters), and bio compatibility to human
tissues. A number of modeling works on continuum robots were reported[4, 5, 6].
The models were mainly developed on the basis of Cosserat rod with either en-
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ergy approach or variational methods [7, 8]. An approach of including torsion was
proposed by Dupont et al. in [9]. In most works, shape models were derived by
assuming piecewise-constant curvatures.

In this work, the problem of shape modeling for continuum robots built with con-
centric tubes is addressed, focusing on the geometrically exact model of the robot
shape. In this modeling work, both the bending deflection and torsional deformation
are considered. As the shape model is derived on the basis of continuous curvatures,
a more comprehensive and accurate model for the continuum robot can be obtained,
compared with the piecewise constant curvature approach. Simulations were carried
out to demonstrate the application of the model.

The paper is organized as follows. Section 2 describes the geometry of a spa-
tial curve and a single tube, upon which the equilibrium condition of a two-tube
assembly is established. The shape modeling of continuum robots is presented in
Section 3. Simulation results are reported in Section 4. The work is concluded in
Section 5.

2 Model of a single spatial tube

A continuum robot can be built with multiple sessions of concentric tubes, as
demonstrated in Fig. 1, which can be considered as a combination of several sections
serially connected. In each session, two tubes of different diameters are assembled
with variable configuration and thus build the desired shape. The shape modeling of
continuum robots can thus be built on the shape calculation of a single tube.

Fig. 1 A continuum robot built with multiple sessions of concentric tubes

2.1 Geometry of a spatial curve

A space curve C can be expressed as a function of arc length s, i.e., C : r = r(s),s ∈
R. At any point s, the derivative of the function r(s) with respect to s is equal to
the tangential vector of the curve, i.e. t = dr/ds, as shown in Fig. 2. Together with
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the normal vector n at s, and a third vector b = t×n, the Frenet-Serret frame, or
F-S frame in short, is fully established. The shape function of a space curve can be
described by the Frenet-Serret equation[10] in matrix form

T′ = Teκ; eκ =

2
4 0 −τ κ

τ 0 0
−κ 0 0

3
5 (1)

where T = [n,b, t] and κ = [0,κ,τ]T is a vector of curvatures. Here, and in the bal-
ance of the paper, the prime symbol denotes the derivative with respect to arc length
s, and eκ is the cross-product matrix (a skew-symmetric matrix) of the vector κ .

x
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Fig. 2 A spatial curve and its associated
Frenet-Serret frame

The F-S frame admits kinematic mean-
ings. In fact, if the F-S frame slides along
the curve at a unit velocity, the value of κ is
the angular rate of the frame about b, while
τ is the angular velocity about t. The vector
κ = [0,κ,τ]T , if interpreted in terms of ve-
locity, is the local velocity expressed in the
F-S frame. The global counterpart of κ can
be found by κglobal = Tκ .

The F-S frame is unique, which satisfies
the Frenet-Serret equation and describes en-
tirely the curve shape. For a continuum tube,
however, the material twist at a cross-section
has to be described in order to determine the
tube’s torsional deformation. In light of this, a
frame along the center line has to describe the
twist of the tube, in addition to the shape of
the curve. In another words, a frame attached
to the tube but different from the F-S frame is required. In this case, the vector of
curvatures will be transformed due the change of the reference (view) frame, as
shown in the following.

Let the F-S frame be noted as T corresponding to an orientation matrix T. As-
sume there is another reference frame F of orientation matrix F. The transformation
from T to F is described by F = RT, where R is a rotation matrix. Let the vec-
tor of curvatures be λ when the curve is viewed from the reference frame F . The
following relationship between λ and κ can be found

RT κ +ω = λ (2)

where ω is the relative velocity of F frame with respect to the T frame. The alter-
native reference frame in this case is called an adapted frame.

A simple case is the adapted frame is obtained by rotating the F-S frame about t
for an angle of α . Letting the new frame is noted by three orthogonal unit vectors
{x,y,z} and z is parallel to t, eq.(2) becomes
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Rz(α)T κ +α ′ez = λ (3)

where Rz(α) is the matrix of rotation about z-axis. It can be known from eq. (3) that
a curve of curvature of κ and torsional rate τ , when viewed in an adapted frame, has
a vector of curvature κ = [κ sinα,κ cosα,τ +α ′]T .

2.2 Equilibrium equations

When a tube is subject to forces, an equilibrium condition is established after defor-
mation. Refer to Fig. 3 where a small piece of a spatial rod is shown, the equation
of moment equilibrium is derived as

dm+ ezds× f = 0 (4)

where ez = [0,0,1]T . Noting that m in this equation is expressed in a moving adapted
frame, care has to be given to both the variation of the vector and the frame as well.
That means

dm = m′ds+κ ×mds (5)

Finally, we have
m′+κ ×m+ ez × f = 0 (6)

The second term in the left-hand side of equation (6) accounts for the effect of the
tube’s torsion. Likewise, the force equilibrium equation is found as

f′+κ × f = 0 (7)

Assume the rod deflection is subject to the linear elasticity theory and the axial
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Fig. 3 Equilibrium condition, (a) a small piece of single spatial curved rod, (b) an assembly of two
concentric tubes
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extension can be ignored, we could concern about only the moment equilibrium
equation. In this regard, the constitutive equation for the space rod subject to bend-
ing and torsional moments is

m(s) = K(κ(s)− κ̄), with K =

2
4 kx 0 0

0 ky 0
0 0 kz

3
5=

2
4EI 0 0

0 EI 0
0 0 GJ

3
5 (8)

where κ̄ = [κ̄x, κ̄y, τ̄]T is the vector of initial curvature of the tube. E and G are the
material’s elastic (Young) and shear modulus, while I and J are the area and polar
moment of inertia at a cross section, respectively.

3 Shape modeling of assembled tubes

When two tubes are assembled, they build a constrained mechanical system. To
describe the deformation of each tube, local frames are established on each tube,
which are able to describe the shape of their centerline and also the tube twist.
The two local(adapted) frames are only different in twist angle, as demonstrated in
Fig.3b.

For each segment of the tube assembly, the internal moments are balanced, i.e.,

m1(s)+Rz(α)m2(s) = 0 (9)

with
mi = Ki(κ i − κ̄ i), i = 1,2 (10)

In this case, κ i = [κix,κiy,τi]
T , κ̄ i = [κ̄ix, κ̄iy, τ̄i]

T for i = 1,2. Moreover, the mechan-
ical constraint implies that two tubes’ center lines superpose on each other, with
only difference in torsional twist. In other words, eq. (3) has to be satisfied:

Rz(α)T κ1(s)+α ′ez = κ2(s) (11)

where α is the relative twist angle, as demonstrated in Fig.3b, which is defined as

α(s) = θ2(s)−θ1(s) (12)

where θi, i= 1,2 is the twist angle of the i-th adapted frame measured with respect to
the F-S frame. Both equations (9) and (11) are derived in a local frame. We rewrite
eq.(11) as

κ1(s) = Rz(α)(κ2(s)−α ′ez) (13)

Substituting equations (10) and (13) into (9) yields

K1(Rz(α)κ2 −α ′Rz(α)ez − κ̄1)+Rz(α)K2(κ2 − κ̄2) = 0 (14)
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Noting that a special identity K1Rz(α) = Rz(α)K1 exists for the tubes, due to the
fact that the diagonal stiffness matrix K1 contains identical bending stiffness for x–
and y– directions, we finally obtain

κ2 = (K1 +K2)
−1(RT

z (α)K1κ̄1 +K2κ̄2 +α ′K1ez) (15)

Obviously, the shape of the tube assembly is fully determined if α and α ′ can be
solved. To this end, we first expand eq. (15), which yields

κ2x =
E1I1κ̄1y sinα +E1I1κ̄1x cosα +E2I2κ̄2x

E1I1 +E2I2
(16)

κ2y =
−E1I1κ̄1x sinα +E1I1κ̄1y cosα +E2I2κ̄2y

E1I1 +E2I2
(17)

Recall that the third equation of eq.(6) is about the twist of tubes, which can be
rewritten as

GiJiθ ′′
i +κixEiIi(κiy − κ̄iy)−κiyEiIi(κix − κ̄ix) = 0, i = 1,2 (18)

that is
θ ′′

i =
EiIi

GiJi
(κixκ̄iy −κiyκ̄ix) (19)

Substituting eqs. (16) and (17) into (19) and finally into equation

α ′′(s) = θ ′′
2 (s)−θ ′′

1 (s) (20)

yields
α ′′(s) = Acosα(s)+Bsinα(s) (21)

where

A =
E1I1E2I2(G1J1 +G2J2)

G1J1G2J2 (E1I1 +E2I2)
(κ̄1xκ̄2y − κ̄1yκ̄2x) (22)

B =
E1I1E2I2(G1J1 +G2J2)

G1J1G2J2 (E1I1 +E2I2)
(κ̄1xκ̄2x + κ̄1yκ̄2y) (23)

Differential equation (21) can be solved with boundary conditions (BCs). For
fixed-free ends, the BCs are

α(0) = θ2(0)−θ1(0),α ′(l) = 0 (24)

When a load is applied at the free end, the boundary conditions will change. The
loaded cases require further detailed formulation and will be discussed in a separate
paper.

The differential equation (21) is now ready to be solved with a numerical solver.
With the curvature and the changing rate of twist angle found, the tube-assembly’s
shape can be uniquely determined for any given initial configuration at the end s= 0.
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Equation (21) is the governing equation of the torsion for the tube assembly.
The equation is different from the results reported in [9] (eq. (24)), as seen in the
different coefficients. This is due to the fact that the new model is not limited to
assemblies of tubes of constant curvatures as the approach in [9]. Instead, the new
model can be applied to tube assembly of continuous curvatures, thus has a more
general use in the shape calculation of continuum robots.

4 Simulations

The continuum robot in this work is built with concentric tubes of NiTiNol (Nickel-
Titanium) alloys (NiTi SE 508). The outer tube has a diameter of 1.6mm and thick-
ness of 0.2mm, while the inner tube is 1.32mm in diameter and 0.225mm in thick-
ness, as listed in Table 1. The area and polar moments of inertia of the tubes can be
calculated with the tube geometric parameters.

Table 1 Physical and geometric parameters of tubes

Parameter Value Description
Physical E 5×1010Pa Young Modulus

G 2.3×1010Pa Shear Modulus
Geometric κ̄1, κ̄2 1/236,1/294 [1/mm] pre-curvatures of outer and inner tubes

l1, l2 200,200 [mm] tube length
d1(d2), t1(t2) 1.6(1.2),0.2(0.2) [mm] outer (inner) tube’s diameter and thickness

The simulation result on torsional deformation was obtained, as shown in Fig. 4a.
The input angle refers to the relative twist angle α(s) at s = 0. If one tube is fixed
and the other is connected a motor, the input angle is equal to the motor’s rotation.
The measurement of torsional deformation reported in [11] is shown too in Fig. 4a
for comparison. It is seen that the two results are very close to each other.

The simulation results on the tube assembly’s shape were also obtained. One re-
sult is displayed in Fig. 4b, where the pose of the tube-tip is shown together with a
frame at the tip to indicate the orientation. While the simulation was carried out for
single session of two-tube assembly, it could be extended to complicated configura-
tions where more sessions of tube assemblies connected serially to build a curve of
desired shape.

5 Conclusions

In this work, the shape modeling of a type of concentric-tube continuum robot was
developed for an assembly of super-elastic NiTiNol tubes. A new model was de-
veloped, in which both bending deformation and torsion are considered. The model
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(a) (b)

Fig. 4 Simulation results: (a) twist angle simulations (solid line) compared with measurements
(dots), (b) tube centerline changing with outer tube rotation. Red lines show the tube orientation

allows the calculation of the shape a tube assembly as a function of the parame-
ters of tubes and their relative angle. The model, developed for tubes of variable
curvatures, can be used in the continuum kinematic design and analysis.
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