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• Stellar mass BHs have spins:

• BH spins can be determined via the continuum-fitting model

• BH spins can also be measured in merging BH binaries (LIGO)

• The two classes of BHs (transient vs persistent)  have different spins

• The fast spins of the persistent BHs are natal 

• The BH spins seem to be correlated with the jet power
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¨ * Introduction
¨ * Degenerate Fermi Gases

Non-relativistic and extreme relativistic electron / (n,p,e-) gases

¨ * White Dwarfs
Structure, cooling models, observations

¨ * Neutron Stars
Structure and equation-of-state

¨ * Radio Pulsars
Characteristics, spin evolution, magnetars, observations

¨ * Binary Evolution and Interactions
X-ray binaries, accretion, formation of millisecond pulsars, recycling

¨ * Black Holes
Observations, characteristics and spins

¨ * Gravitational Waves
Sources and detection, kilonovae

¨ * Exam
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• Concepts and emission of GWs
• Detection of GWs – LIGO, LISA, PTA

• Astrophysical sources
• Burst emission sources (extra galactic)
• Continuous emission sources (Galactic)

• Merger timescale
• GW150914 (first BHBH merger)
• GW170817 (first NSNS merger)
• Results from GWTC-3 (LIGO O1⎼O3)
• Kilonovae
• aLIGO detection rates

• Population synthesis
• Challenges



The last 400 years of astronomy were about
”seeing” a silent movie. 

LIGO is delivering the ”sound track”.

5Aalborg, Autumn 2023 Thomas Tauris



(1) Quasi-stationary 
weak-field regime

(2) Quasi-stationary 
strong-field regime

(3) Radiative regime

(4) Highly relativistic 
regime

Solar system 
experiments

Binary pulsar experiments

GW astronomy

slide by Norbert Wex
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”The curvature of space determines how matter should move
- and matter determines the curvature of space”

• Imagine space as a stretched rubber sheet 
• A mass on the surface will cause a deformation
• Another mass dropped onto the sheet will roll towards that mass

(Einstein’s field equations explained by John Wheeler)
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strain (curvature) = const. x stress (mass, energy)

How does the distribution of mass-energy determine the geometry ?

µnµn TKG =

stress-energy tensor (source term)

space-time curvature tensor

scalar constant ”effectiveness of distorting space-time”

(cosmological constant)
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Minkowski flat space:

(special relativity)
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Semi-Riemannian geometry
(curved space):

Metric

metric tensor
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Let  the metric tensor be:                                 where
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system it can be shown that

is a solution to Einstein’s field eq.
(the equation for a plane wave)02
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Analogue to Hooke’s law:
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”force” ”displacement”

Consider a small pertubation from a flat space-time: 
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• The emitted waves carry information of the changes in the gravitational
field of the source as a result of a change in the distribution of mass, 
energy and momentum

• Gravitational waves propagate with the speed of light
(the graviton has zero rest mass)

• They give rise to fluctuations in the metric where they pass through

• The waves’ force field is transverse to its propagation direction and
has quadrupolar symmetry (i.e. the graviton has S=2)
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ü gravitational waves

A time-varying quadrupole moment* gives rise to
emission of gravitational waves with a strain amplitude:

µuµu Q
dc
Gh 
4
2

»
(Newtonian/quadrupole approximation)

* an asymmetric distribution of mass with respect to the rotation axis: 

distance to source

quadrupole moment
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¨ no gravitational waves



Acceleration of charged particles electromagnetic waves:

Acceleration of masses gravitational waves: 

Gravitational waves   - How are they created?
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Consider the following geometry:

Remember:
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0=== dtdzdy
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gravitational
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dd+ = + Û » the wave (strain) amplitude is

twice the relative length change
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for many astrophysical sources

NS-NS collision at 200 Mpc

wave
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Beware, only space is deformed - not matter!
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order-of-magnitude estimate

where (M,R,T,v) are characteristic values of the source

µuµu Q
dc
Gh 
4
2

=

10 -17   at outskirts of our Milky Way (10 kpc)
10 -20   at the Virgo cluster of galaxies (15 Mpc)
10 -21   at 200 Mpc
10 -22   at the Hubble distance  (3 Gpc){h =
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inner product (scalar)
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order-of-magnitude estimate

where (M,R,T,v) are characteristic values of the source

M=140.000 kg
R=20 meters 
v=300 m/s 

1 mm mountain on a neutron star:           steel rod:
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M=1.4 M
R=10 km, Dr=1 mm 
W=2pn=1000 rad/s  

2~MRI

L      =10 -24     erg/sgwrL      =10 36    erg/sgwr

a factor of  ~ 10 60    in difference!!!
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Fourier decomposition factor
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Peters (1964)

PSR B1913+16  (Hulse-Taylor pulsar,  Porb=7.75 hr, ecc=0.61)
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LGW = 7⇥ 1024 W (LGW,� = 5000 W)[year]

Gravitational waves do exist!
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MERGING NEUTRON STARS ⎯ data for Galactic sources 21

Note:
ecc @ 0.7
Þ t GW  ¯ x 10

Tauris & van den Heuvel (2023)
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the wave amplitude is twice the relative length change
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GWs in second harmonic (n=2)



wave amplitude: h ~ 10-21

measurement accuracy to achieve:  DL ~ 10-16    cm                  
(1/1000 the diameter of a proton!)

Þ interferometer arm length:  L=DL/h ~ 4 km

aLIGO observations began in 2015

aVIRGO observations began in 2016

Aalborg, Autumn 2023 23Thomas Tauris

KAGRA joined in 2020



LIGO GEO Virgo KAGRA

INDIGO

Angular resulution
below 5-10 deg2.
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RATE OF MERGING NEUTRON STARS

Merger rate of double neutron star binaries in a Milky Way-like galaxy: 3−10 Myr -1

25

29
Aarhus, Autumn 2021 Thomas Tauris
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advanced LIGO

Range: 
NSNS merger 200 Mpc
NSBH merger 600 Mpc
BHBH merger 5.0 Gpc

(Z=0.8)

Detection rate:
3-10 per year
(Milky Way: 3-10 Myr -1)

You are here!

Highlyuncertain

LIGO/VIRGO GW DECTECTION RATES

Main uncertainties: 
CE evolution, kicks

26



merger time

separation

thermal (Brownian)  noise

seismic noise
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Sensitivity noise: photon, thermal and seismic.
5 cm wide laser beam shining on 1017   atoms.
Light is reflected 100 times  | |

4 km

)(thLI pd µDµDFµD
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Michelson-M
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The chirp mass determines how fast the signal sweeps (”chirps”) through the frequency band. 
It can be determined to within 1% error.

3
3/8

5 5

11

5/8

3/8

1/4

1/4

1 1( ) 5
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51 1( )
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GW
chirp merge
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-ê úë û

é ù
= ê ú

-ê úë û

Riles (2013)

Note, this expression breaks down as
r® 0  (v/c)®1

Chirp mass
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A brief chirp from a galaxy 1.4 billion light years away…       Detection of gravitational waves!

32

GW150914, GW151012, GW151226, 
GW170104, GW170608, GW170729,
GW170809, GW170814, GW170817,
GW170818, GW170823, (O3.......)

GRAVITATIONAL WAVES: The Discovery!

BH BH
G



FIRST DETECTION OF GRAVITATIONAL WAVES:  GW150914 33

Aalborg, Autumn 2023 Thomas Tauris 39



Collision of two black holes:
36 Msun + 29 Msun ≠  65 Msun

Mmerger = 62 Msun !     (3 Msun⋅c2 emitted as GWs)
35-250 Hz  (8 cycles)
htop = 3.4x10-22

Z=0.09  (400 Mpc = 1.4 bill. light years)

DETECTION OF GRAVITATIONAL WAVES:  GW150914 34
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Chirp mass = 29 Msun

Must be BH-BH merger!
(also the GW freq. at merger
points to radii equal to 
Schwarzchild radii of 
massive BHs)



GW150914 and the revolution

Aalborg, Autumn 2023 Thomas Tauris

The ring-down

36

Typical value



3 phases:

THREE PHASES OF A BH+BH MERGER 37
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38EXAMPLES OF BH+BH MERGERS DETECTED 
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39

11* events in O1 and O2

10  BH+BH mergers
1  NS+NS merger

~ 80 events in O3a + O3b
x   BH+BH mergers 75
y   NS+NS mergers 1(3)
z BH+NS mergers 2(3)

mass gap 2(3)

?

DETECTIONS SO FAR (Nov. 2022)

Observational selection bias against?

• We predict ~10 times more detections 
of mixed BH/NS mergers compared to 
double NS mergers

45



40MERGERS DETECTED LIGO/Virgo science run O3a + O3b   (2019−2020) 

NSNS
BHNS

very massive

q ~ 0.10

Mainly BHBH mergers
(selection effect: detection vol. ~ Mchirp

5/2)

Aalborg, Autumn 2023

See GWTC-3
Population

analysis

Thomas Tauris 46



41MERGERS DETECTED LIGO/Virgo science run O3a + O3b   (2019−2020) 

Aalborg, Autumn 2023 Thomas Tauris

Detection range (NSNS) # Detection versus time-volume

47



42MERGERS DETECTED LIGO/Virgo science run O3a + O3b   (2019−2020) 

Component masses
Mass ratios
Spins
Distances

Aalborg, Autumn 2023 48



43MERGERS DETECTED LIGO/Virgo science run O3a + O3b   (2019−2020) 

Aalborg, Autumn 2023

Tauris & van den Heuvel (2023)

Thomas Tauris 49



GW SPECTRUM AND INSTRUMENTS 44

Follow-up:
EM transient counterparts
….. and neutrinos

© NASA

PTA LISA LIGO/Virgo/KAGRA

Aalborg, Autumn 2023 Thomas Tauris 51



GW SOURCES AND FREQUENCIES 45

v Colliding neutron star + black hole binaries

(           may detect these mergers too)

v Supernova core collapse (Galactic!)

v Supermassive black hole mergers

LISA

LIGO

LISA

LIGO

I. Transient (one-time) burst events:   extragalactic

II. Persistent sources (continuous emission):   Galactic

high freq. GWs LIGO: 10 Hz - 1 kHz
low freq. GWs LISA:  0.1 mHz - 10 mHz

v Pulsars or accreting NS

v Galactic resolved compact binaries (WD, NS, BH)

∆𝐸!" < 10#$ 𝑀⨀ 𝑐&*

*
LISA

LIGO
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NS+NS MERGER  GW170817 + EM FOLLOW-UP 47
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New era of multi-
messenger astrophysics

Detection of a kilonova
(radioactive decay of 

heavy r-process elements)

DETECTION OF GRAVITATIONAL WAVES:  GW170817 + EM FOLLOW-UP 48
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NGC 4993
d = 40 Mpc (z=0.009, 130 mill. ly)

DETECTION OF GRAVITATIONAL WAVES:  GW170817 + EM FOLLOW-UP 49
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• mass
• spin
• eccentricity
• luminosity distance
• system orientation
• BH/NS merger-rate density
• evolution over cosmic time

(primordial BHs, SMBH seeds)

• sky location
• host galaxy
• redshift
• local environment
• heavy r-process nucleosynthesis
• emission processes (kilonova)
• sGRB (central engine, beaming, jets, afterglow)

• Testing theories of gravity
• NS equation-of-state
• Cosmology

GW EM NEUTRINOS
• neutrino physics
• central engine
• SN explosions

© Patricelli

80 MoUs involving 170 instruments!!! 

© Branchesi

GRAVITATIONAL WAVES AND ELECTROMAGNETIC FOLLOW-UP 50
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CONSTRAINING THE NS EOS 51

GW phase depends on tidal deformability parameter: 
5( / )k R ML µ

S. Roswogg

• Tidal deformation and NS EoS

Flanagan & Hinderer (2008) 58



• Binary stellar evolution

• Population synthesis
(input distributions and stellar grids)

• Galactic star formation rate
(formation history of massive binaries)

• Galactic potentials
(to probe location of mergers in host galaxies)

• Extrapolation to local Universe
(scaling-law of galaxy number density)

SIMULATIONS OF LIGO/VIRGO MERGER RATES 52

RECIPE
1 billion



POP. SYNTHESISNotes on

1. Reproduction of LIGO rates is no success criterion on its own
2. Can Galactic sources be reproduced?  (properties of HMXBs, DNSs, etc.)

3. Is the input physics reasonable? Is the evolution self consistent?
4. Watch out for papers that claim they can explain everything!

COMMENTS ON POPULATION SYNTHESIS 53

E.g. Stellar evolution (Z)
Klencki et al. (2020)*

*
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BH-BH

BH/NS
NS-NS

BH-BH

BH/NS

NS-NS

Kruckow et al. (2018), MNRAS

GW170729
GW170809
GW170818
GW170823

54

GW190425

R = 1540 +/- Gpc-3 yr-1
GW170817:

GW190425:

3200
1220

GW190425
Mchirp = 1.44 Msun

Mtotal = 3.3 Msun

(𝝌 < 0.05)

R = 1090 +/- Gpc-3 yr-11720
800

GWTC-2 rate:
R = 320 +/- Gpc-3 yr-1490

240

PROGENITORS OF FIRST 11 LIGO-VIRGO EVENTS (O1+O2)

GWTC-3 rate:
R = 99 +/- Gpc-3 yr-1260

86



Semi-major axis,  a (Rsun)

Ec
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e

NS mass ratios

55POPULATION SYNTHESIS:  CALIBRATION

Kruckow, Tauris, et al. (2018), MNRAS 

Important calibration data!!!

Do not trust population synthesis 
if it cannot reproduce observed 
Galactic DNS systems



MERGER-RATE DENSITY

local Universe

GW170817

@design sensitivity: 1-5 detections per yr

56

Detection
rates

Kruckow et al. (2018), MNRAS 



PROGENITORS OF LIGO-VIRGO EVENTS: METALLICITY 57
Kruckow et al. (2018), MNRAS



GW170817: NS MASSES

GW170817

@design sensitivity: 1-5 detections per yr

58

Kruckow, et al. (2018), MNRAS 

De
la

y 
tim

e

Our NS mass solutions for GW170817
are typical for Galactic DNS systems

We find age solutions from 
<100 Myr to >10 Gyr



GW170817:  AGE AND DISTANCE FROM HOST GALAXY 59

For NGC 4393, the escape velocity at the location 
of GW170817 is about 350 km s-1(Pan et al. 2017), 
much larger than the typical systemic velocities  
we obtain in our simulations. 

NGC 4993

Kruckow et al. (2018), MNRAS 



60BHBH SPINS

LIGO network measurements:

LIGO run O3a:

LIGO run O1+O2:

74



61BHBH SPINS

Intrepretation of BHBH mergers spins

Given that the far majority of all BH-BH mergers reported so far have near-zero
effective spins leads to only three potential explanations (e.g. Belczynski et al., 2020): 

If the individual BH spin magnitudes are large, then: 
(i) Either both BH spin vectors must be nearly in the orbital plane, or 
(ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude.

Finally, there is also the possibility that: 
(iii) the BH spin magnitudes are small.

Belczynski et al. (2020) demonstrate that they can reproduce the observed distribution of low 𝜒eff values 
within the classical isolated binary evolution scenario (the CE channel) of BH-BH formation assuming 
effcient angular momentum transport.

Aalborg, Autumn 2023 Thomas Tauris 75



62BHBH SPINS

Expectations from stellar evolution:

• First-born BH will be spinning rather slow
• Second-born BH will be spinning rather fast

1. Efficient angular momentum transport by
viscosity will couple the stellar core to its
envelope, thereby slowing the spin of the
core as the envelope expands when it
becomes a giant star. Contradiction *

2. Tidal interactions between the first-born
BH and the close-by naked-core WR-star
(progenitor of the second-born BH) causes
the latter to spin up efficiently.

See e.g.: Kushnir et al. (2016), Hotokezaka & Piran (2017), 
Zaldarriaga et al. (2018), Fuller & Ma (2019), Qin et al. (2019), 
Belczynski et al. (2020), Bavera et al. (2020) 

* In clear tension with observations of BH spins in HMXBs (see Lecture 9) 

Aalborg, Autumn 2023 Thomas Tauris 76



63BHBH SPINS

Aalborg, Autumn 2023 Thomas Tauris

sort hul 1 sort hul 2

77



short Gamma-Ray Burst (sGRB)
sGRB may be launced (within 2 sec) via either:

a) Pair-annihilation of neutrinos

b) Strong (and twisted) B-field (Blandford-Znajek mechanism, MRI)

NS+NS
BH+NS

(hypernovae)

Thomas Tauris 64



Unified Picture of Gamma-Ray Bursts

64

Gottlieb et al. (2023)
https://arxiv.org/abs/2309.00038

https://arxiv.org/abs/2309.00038
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Gottlieb et al. (2023)
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Gottlieb et al. (2023)
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Excellent reviews:
Giacomazzo, Eichler & Arcones (2019) 
Shibata & Hotokezaka (2019)

sGRB

Metzger & Berger (2012)



Optical near-IR kilonova (makronova / sGRB afterglow)

• 0.01-0.1 Msun ejected as dynamic + viscous ejecta
(more disk mass for aligned spin axes, 
also dependence on NS+NS vs BH+NS)

• r-process nucleosynthesis (heavy n-rich nuclei).

• The decay to stability powers an EM transient.
(Abbott et al. 2017, Metzger 2017, Rosswog et al. 2018)

• Peaks at  L=1042 erg s-1 after about one day
Faint (21-24 mag) and fast decay (hrs-days)
The EM signal (kilonova) is affected by mass
composition (Ye), and temperature of ejecta.

• ISM powered X-ray and radio afterglow
from synchrotron emission
(a few 100 µJy, weeks-months)

• Neutrinos are not expected to be detected
(even in next generation detectors) due
to the large distances.

Metzger & Berger (2012)
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Metzger & Berger (2012)
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The r-process (see Giacomazzo et al. 2019)

Rapid neutron-capture process (r-process) was proposed by Burbidge et al. (1957)
and Cameron (1957). It occurs due to fast neutron (n) captures in comparison to
beta-decays, and runs very close to the n-drip line.

Accumulation of material along the path occurs whenever isotopes with a closed
n-shell are reached (affecting both the n-capture cross sections and the beta-rates).

After the intense supply of free neutrons has ceased, the extrenely n-rich isotopes
undergo a series of beta-decays to stability.

The final average mass can be estimated from:
final average mass number (e.g. Pu-244)

initial seed nuclei (typical iron group, e.g. 60)

neutron abundance
summed up abundances of seed nuclei

𝐴 ' = 𝐴 ( +
𝑌)
𝑌*++, (

ratio (e.g. 184) =

Note, a high Yn is possible where Ye is low 
(b/c charge neutrality), e.g. in NS merger ejecta.

67Thomas TaurisAalborg, Autumn 2023

Sometimes fission cycles occur in which
Af is divided in two and builds up again.
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Modelling the r-process

Necessary information: characteristics of light to heavy nuclei between the 

valley of stability and the n-drip line. 

Calibration: Solar spectroscopic data, meteoritic values, deep-sea sediments.

In particular, the Galactic evolution of the Eu (Z=63) abundance is of interest.

The pattern of abundances of heavy n-capture elements (e.g. Z=58-76 or the 

Lanthanides) observed in r-process-rich metal-poor stars are remarkably

similar to the Solar System measurements.

Actinides have a clear and unique r-process origin.
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Double neutron star mergers:  
® ejection of                          heavy r-process elements

See also Rosswog (2013, 2013RSPTA.37120272R)

Just et al. (2015)

Cosmic Journey   Origin of Elements 70

3 210 10 M- --
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http://adsabs.harvard.edu/abs/2013RSPTA.37120272R
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Mass ejecta and electron fraction
1) Dynamical ejecta (tidal disruption)

2) Disk ejecta (viscous heating and MHD)

Total amount of ejecta (few 0.001 Msun to 0.1 Msun) depends on:

• NS+NS → prompt BH formation or MNS (meta stable, 𝛥t = 10 ms – 10 s)

• Mass ratio  (q < 0.8 leads to larger yield)

• NS radius and BH spin

Important output parameters are: mass, velocity and electron fraction (Ye).

Ye is of key importance for determing the abundance of r-process elements, 

which again determine the opacity of the EM emission.
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Electron fraction and opacity

NS material: Ye = 0.05 – 0.1

However dynamical ejecta could be influenced by weak processes (>10 MeV)

which drive Ye = 0.5

n-rich matter (Ye small): r-process elements with A > 120 are robustly synthesized

n-poor matter (Ye large): only r-process elements with A < 130 are synthesized
(i.e. lanthenides are not produced)

Opacity (photon):  large for lanthenide-rich ejecta (red colour)

small for lanthenide-poor ejecta (blue colour)

Aalborg, Autumn 2023 Thomas Tauris
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Shibata & Kotokezaka (2019)

A>120 synthesized
(lanthanides)

A<130 synthesized



FURTHER LESSONS FROM GW170817 EM FOLLOW-UP 75

The following 5 slides are provided by Duncan Brown.
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The r-process: observational evidence
NS mergers versus core collapse supernovae

GW170817: first firm detection of kilonova (EM transient).

Ejected mass depending on amount of energy release  

ending up in the observed emission (Rosswog et al. 2017)  

21.5 10ejectM M-D ³ ´


Heavy r-process elements are also observed in atmospheres of old stars

and in the Solar system. If they are explained by core-collapse SNe the 

amount of enrichment per explosion is therefore about for a

Galactic SN rate of about

However, studies of a group of stars in the dwarf galaxy Reticulum II supports

rare events with large ejecta (NS mergers) compared to frequent events with 

little ejecta (core-collapse SNe), cf.  Beniamini et al. (2016).

510 M-


10.01 yr-
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WHAT TO EXPECT IN THE COMING YEARS 81

• Spin distributions of BHs and NSs

• Tests of GR and other gravity theories

• Multi-messenger astrophysics
ü GWs
ü Optical
ü X-rays
ü Radio
ü …more

| Χeff | < 0.35 at the 90% credible level for all events!
(degeneracy between projected spins and
orbital inclination, masses)

( )1 1 2 2
1

eff m m
M

c c cº +

Provides a clue to their astrophysical origin
e.g. Baibhav et al. (2020)

3G ?
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WHAT TO EXPECT IN THE COMING DECADES 82

2.5 million km

LISA
~2034

3G
~ ?

EINSTEIN TELESCOPE COSMIC EXPLORER

• Detect all BH-BH mergers out to z~20
• Detect the BH seeds evolving into SMBHs
• Possibly detect primordial BHs
• Determine the NS EoS to extreme precision
• etc.

Ask for 3 detectors
(~ 1 billion €  each)
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83
Tauris (2018), PRL

GW spectrum evolution
with finite-temperature effects
(specific entropy) of the WD donor

Determine NS the mass
to a  high accuracy via a
new method

ONGOING THEORETICAL WORK ON GW SOURCES
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Tauris (2018), PRL)

0 02 2c cycles gw obsh N h f T h» =
2/3 5/3 2/3 5/3

0 4

32
80

gw chirp

L

G f M
h

c d
p

=

ONGOING THEORETICAL WORK ON GW SOURCES
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Shapiro & Teukolsky (1983), Wiley-Interscience

Curriculum
- Lecture notes
- Tauris & van den Heuvel (2023), Chapter 15

(Shapiro & Teikolsky Chapter 16)
(Riles 2013; Colpi & Senasa 2017)
(LIGO-Virgo-KAGRA: GWTC-3: arXiv:2111.03634)

Exercises:  # 7, 8
- Monday Nov. 13, 10:15-12:00

+ course evaluation
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https://ui.adsabs.harvard.edu/abs/2021arXiv211103634T/abstract


Stars
SNe

CompactObjects
Binary
InteractionsGravitational

Waves

86LOTS OF SYNERGIES!
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¨ * Introduction
¨ * Degenerate Fermi Gases

Non-relativistic and extreme relativistic electron / (n,p,e-) gases

¨ * White Dwarfs
Structure, cooling models, observations

¨ * Neutron Stars
Structure and equation-of-state

¨ * Radio Pulsars
Characteristics, spin evolution, magnetars, observations 

¨ * Binary Evolution and Interactions
X-ray binaries, accretion, formation of millisecond pulsars, recycling

¨ * Black Holes
Observations, characteristics and spins

¨ * Gravitational Waves
Sources and detection, kilonovae

¨ * Exam
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Thanks for joining!Remember your evaluations
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