PHYSICS OF COMPACT OBJECTS AND THEIR BINARY INTERACTIONS

Thomas Tauris – Physics, Aalborg University

AALBORG

X-ray Binaries

Last week

- X-ray binaries (HMXBs / LMXBs)
- Roche-lobe overflow Cases A, B, C, and Case BB
- Stability criteria for mass transfer / stellar evolution
- Orbital angular momentum balance equation
- Common envelope and spiral-in evolution

For a review: Tauris & van den Heuvel (2006) and new textbook: Tauris & van den Heuvel (2023)

Programme

* Introduction

* Degenerate Fermi Gases

Non-relativistic and extreme relativistic electron / (n,p,e⁻) gases

* White Dwarfs

Structure, cooling models, observations

* Neutron Stars

Structure and equation-of-state

* Radio Pulsars

Characteristics, spin evolution, magnetars, observations

* Binary Evolution and Interactions

X-ray binaries, accretion, formation of millisecond pulsars, recycling

* Black Holes

Observations, characteristics and spins

- Gravitational Waves
 Sources and detection, kilonovae
- * Exam

Aalborg, Autumn 2023

Recyling MSPs – accretion physics

- Detailed LMXB evolution
 - dependence on P_{orb} and M_2

- relation between M_{WD} and P_{orb} for binary pulsars
- mass-transfer rate; final neutron star mass
- equilibrium spin period and spin-up line in P-P_{dot} diagram
- Accretion physics
 - Four phases of accretion
 - Accretion disks
 - Accretion-induced magnetic field decay

Millisecond pulsars

Spin period, P (sec)

Millisecond Pulsars - a binary formation scenario

Millisecond pulsars - Key questions on their origin

MSPs

- How fast can they spin?
- Why are their B-field strenghts weak?
- How much mass do they need to accrete?
- What are their orbital periods?
- How old are they?
- Where are they located in our Galaxy (+ kinematics)?
- What is the nature of their companion stars?

Millisecond pulsars - a binary formation scenario

Why?

- Rapid spin: P < 50 ms
- Small period derivative: $\dot{P} < 10^{-17} s s^{-1}$

Solution:

Accretion of mass

$$N = \dot{J}_* \equiv \frac{d}{dt} (I\Omega_*) = \dot{M}_* \sqrt{GM_*r_A} \,\xi$$

$$\dot{J} = \frac{d}{dt} | \vec{r} \times \vec{p} |$$

Lamb, Pethick & Pines (1973) Ghosh & Lamb (1979, 1992)

$$B = \sqrt{\frac{3c^3 I_{NS}}{8\pi^2 R_{NS}^6} P \dot{P}}$$

Magnetic-dipole model

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times \left(\vec{v} \times \vec{B} \right) - \frac{c^2}{4\pi} \nabla \times \left(\frac{1}{\sigma} \times \nabla \times \vec{B} \right)$$

Geppert & Urpin (1994); Konar & Bhattacharya (1997)

Accretion-induced B-field decay – Ohmic dissipation/diffusion – Flux tube expulsion via spin-down – B-field burial (screening)

Recycling pulsars - A detour in the P-Pdot diagram

Tauris & van den Heuvel (2023)

Pulsar companion stars

Aalborg, Autumn 2023

Thomas Tauris

11

LMXB bifurcation period

Converging

 $P_{orb} < P_{bif}$:

→ LMXB shorten their orbital period Donor star still on main sequence RLO driven by loss of J_{orb} (MB, GWs) Tutukov et al. (1985) Pylyser & Savonije (1988, 1989) Ma & Li (2009) Istrate et al. (2014) Chen et al. (2021)

Single millisecond pulsars

All single millisecond pulsars are likely born in a binary system.

Once a recycled millisecond pulsar turns on its emission of ultra-relativistic particles, it is often able to completely evaporate its companion and thus end up as an <u>isolated</u> millisecond pulsar.

Observational evidence:

eclipsing MSPs with $0.02 M_{\odot}$ companions
the "planetary pulsar", PSR 1257+12

power needed for evaporation = incoming irradiation power from pulsar

$$\frac{1}{2}\dot{M}_{2}v_{esc}^{2} = f \dot{E}_{psr} \left(\pi R_{2}^{2} / 4\pi a^{2}\right) \tau \tilde{M}_{2}^{2}$$

мяр

evaporation timescale

LMXB diverging systems

P_{orb} > P_{bif}: <u>Diverging</u> → <u>LMXB widen their orbital period</u> Donor star is a (sub)giant RLO driven by nuclear expansion

Formation of BMSPs with He-WD:

Unique relation between P_{orb} and M_{WD}

Joss, Rappaport & Lewis (1987)

 $P_{orb} > 1 \, day$

Savonije (1987)

 $0.18 < M_{WD} < 0.46 M_{\odot}$

938

T.M. Tauris & G.J. Savonije: Formation of millisecond

match observations well

Aalborg, Autumn 2023

Istrate et al. (2016)

Rappaport et al. (1995)

Tauris & Savonije (1999)

Thomas Tauris

$P_{orb} - M_{WD}$ correlation for He-WDs

Thomas Tauris

$P_{orb} - M_{WD}$ correlation for He-WDs

- On the red giant branch (hydrogen shell burning) the growth of the degenerate He core mass is directly related to the luminosity of the star
- Temperature is almost constant on the Hyashi track \Rightarrow L \propto R²
- Hence there is a relation between M_{core} and R (Thomas 1967) independent of M_{env}
- The donor star fills its Roche-lobe during the mass transfer \Rightarrow R is correlated with P_{orb}

 $L = 4\pi R^2 \sigma T_{eff}^4$

correlation between (P_{orb}, M_{WD})

Table 1. Stellar parameters for a star with $R_2 = 50.0 R_{\odot}$ – see text.

M_2/M_{\odot}	1.0**	1.6**	1.0*	1.6*
$\log L/L_{\odot}$	2.566	2.624	2.644	2.723
$\log T_{\rm eff}$	3.554	3.569	3.573	3.593
$M_{2 \text{core}}/M_{\odot}$	0.336	0.345	0.342	0.354
$M_{ m 2env}/M_{\odot}$	0.215	0.514	0.615	1.217

* Single star (X=0.70, Z=0.02 and α=2.0).

** Binary donor ($P_{\rm orb}^{\rm ZAMS} = 60.0$ days and $M_{\rm NS} = 1.3 M_{\odot}$)

A perfect circle

Eccentricities

Tauris (2011)

IMXB Early Case B RLO → MSPs with CO-WD

Alternative to CE-phase:

- thermal timescale mass transfer

- isotropic re-emission model

Tauris, van den Heuvel & Savonije (2000), ApJ Lett. 530, 93

L94

Explain MSPs, P_{orb} = 3-50 days & CO/ONeMg WD

Vo

IMXB Case A RLO → MSPs with CO-WD

Podsiadlowski, Rappaport & Pfahl (2002) Tauris, Langer & Kramer (2011)

Explain fully recycled MSPs & CO/ONeMg WD

Pulsar mass: WD mass: Orbital period: Pulsar spin period:

1.97±0.04 M_o 0.500±0.006 M_o 8.69 days 3.15 ms

Was this pulsar born massive?

PSR J1614-2230

IMXB case A

IMXB case A: thermal + nuclear timescale mass transfer

The pulsar was born with a mass of 1.7±0.1 M_{sun}

Aalborg, Autumn 2023

Chemical structure of the CO WD companion

Aalborg, Autumn 2023

For calculating binary star evolution, I recommend using the MESA code

(e.g. for a 12 months Master's project)

https://docs.mesastar.org/en

Accreted mass to spin up pulsar

Aalborg, Autumn 2023

- Introducing the physics of an accreting neutron star
 - Spherical wind accretion
 - Effect of accretion disk

Davidson & Ostriker (1973)

Aalborg, Autumn 2023

Neutron star accretion

B

Phases of accretion:

- I. Isolated pulsar
- II. Gunn-Ostriker mechanism
- III. Propeller phase
- IV. Rapid accretion

Consider a young pulsar with initial high values of Ω and B which evolves through four phases of accretion while the values of Ω (and B) decrease.

 $M_{\rm NS}$

stellar

wind

 \dot{M}

a

Phase I

Isolated pulsar: r_{stop} > r_{acc}

Wind plasma is stopped by pressure of magnetodipole radiation outside the radius of gravitational capture. The pulsar evolves as an isolated pulsar.

$$\begin{aligned} P_{dipole} \approx P_{ram} \\ \dot{E}_{dipole} \approx P_{ram} \\ \dot{E}_{dipole} = -\frac{2}{3c^3} |\ddot{m}|^2 \wedge |\ddot{m}| \sim BR^3 \Omega^2 \\ \frac{\dot{E}_{dipole}}{4\pi r_{stop}^2 c} = \frac{2B^2 R_{NS}^6 \Omega^4 / 3c^3}{4\pi r_{stop}^2 c} \approx \frac{1}{2} \rho_w v_w^2 = \frac{1}{2} \left(\frac{\dot{M}_*}{4\pi a^2 v_w} \right) v_w^2 \\ \psi \\ ram pressure of wind \\ r_{stop} = \sqrt{\frac{4B^2 R_{NS}^6 \Omega^4 a^2}{3c^4 v_w \dot{M}_*}} \\ r_{stop} \propto B\Omega^2 \end{aligned}$$

Aalborg, Autumn 2023

B

Tacc

Phase II

Gunn-Ostriker mechanism: r_{acc} , $r_A > r_{stop}$, r_{lc}

Now $r_{stop} < r_{acc}$. However, the Alfven radius is located outside the light cylinder and matter cannot couple to the magnetosphere with v > c. Therefore, matter is accelerated to relativistic energies by magnetodipole waves.

Aalborg, Autumn 2023

Thomas Tauris

 \mathbf{r}_{A}

Phase III

Propeller effect: $r_{lc} > r_A > r_{co}$

Accreted matter couples to magnetosphere in super-Keplerian orbits ($F_{centrifugal} > F_{gravitational}$) and thus material piles up near magnetospheric boundary, which creates a strong braking torque (wind carries off ang. mom.)

$$r_{co} = \left(\frac{GM_{NS}}{\Omega^2}\right)^{1/3}$$

co-rotation radius (Keplerian velocity)

$$N = \dot{J}_{spin} \approx \frac{\partial}{\partial t} \left(m r_A^2 \Omega_K \right) = \dot{M}_{NS} \sqrt{G M_{NS} r_A}$$

braking torque

$$\vec{J} = |\vec{r} imes \vec{p}|$$

$$\dot{\Omega} = \frac{\dot{J}_{spin}}{I_{NS}} \quad \wedge \quad \Omega = \frac{2\pi}{P} \quad \Rightarrow \quad \dot{P} \approx \frac{\dot{J}_{spin}P^2}{-2\pi I_{NS}} \propto L_X^{6/7} \qquad L_X = \frac{dE_{acc}}{dt} = \frac{GM_{NS}}{R} \dot{M}_{NS} \propto \dot{M}_{NS}$$

spin-down rate

X-ray luminosity

 $r_{co} \propto \Omega^{-2/3}$

Braking torque causes Ω to decrease... \rightarrow Phase IV

Aalborg, Autumn 2023

Thomas Tauris

 $r_A^{1/2} \propto \dot{M}_{\scriptscriptstyle
m NG}^{-1/7}$

Phase IV

Neutron star accretion: $r_A < r_{co}$

P (sec)

Spin-up line in the PP-diagram

Tauris, Langer & Kramer (2012) MNRAS, 425, 1601

Spin-up line

FIG. 6.—Long-term frequency history for all pulsars detected by BATSE that were previously known. The squares show the pre-BATSE data taken from Nagase (1989) and additional references. The line is the BATSE data, which we discuss later in great detail. The long-term frequency history for X-ray pulsars observed by BATSE that were known prior to the *Compton Observatory* launch commences 1991 April. For Her X-1, Cen X-3, Vela X-1, 4U 1538–52, GX 301–2, 4U 0115+634, and EXO 2030+375, all frequencies have been orbitally corrected. For OAO 1657–415, GS 0834–430, 2S 1417–62, and A0535+262, orbital corrections have been applied only to the BATSE observations. No orbital corrections have been applied for 4U 1626–67, GX 1+4, 4U 1145–619, or A1118–615, which have unknown, or incompletely known, orbital elements. The BATSE frequencies for OAO 1657–415, GS 0834–430,

Nagase (1989), Bildsten et al. (1997)

Aalborg, Autumn 2023

Thomas Tauris

Accretion disks

High specific ang.mom. of accreted gas in binary

 → formation of accretion disk (ang.mom. is transported outward via viscous stresses)

Turbulent-enhanced viscosity models (e.g. α -model by Shakura & Sunyaev (1973))

- If accretion rate is < 0.01 \dot{M}_{Edd} : <u>thin disk (high opacity</u>) or <u>ADAF</u> (low opacity)
- If accretion rate is about M_{Edd}: slim disks
- If accretion rate is > \dot{M}_{Edd} : <u>torus</u> (with collimated beam of radiation)

Magnetic stresses truncate the Keplerian disk flow: - transition zone between disk and magnetosphere

Spin-up lines in P-P_{dot} diagram depend on nature of accretion disk model (optically thick/thin and gas/radiation pressure dominated)

$$R_{inner\,disk}\propto \dot{M}^a\mu^b M^c$$

Aalborg, Autumn 2023

Ghosh & Lamb (1979)

Accretion-induced magnetic field decay

induction equation:

$$\frac{\partial B}{\partial t} = -\frac{c^2}{4\pi} \vec{\nabla} \times \left(\frac{1}{\sigma_{el}} \times \vec{\nabla} \times \vec{B} \right) + \vec{\nabla} \times (\vec{v} \times \vec{B})$$
NS crust
NS core
convective transport of
accreted material (Hall term)
NS core
" $\sigma_{el} = \infty$ "
ad approximation!
$$\frac{\partial B}{\partial t} = -\frac{c^2}{4\pi \sigma_{el}} \nabla^2 \vec{B} \iff B = B_0 e^{-t/\tau_D} \left(\tau_D \approx \mu_0 \sigma_{el} L^2 \right)$$

$$\sigma_{el} = \sigma_{el} \left(T, \rho, A, Z, Q \right)$$

Note: residual B-field ~10⁸ G (observed in millisecond pulsars) due to superconducting interior

Aalborg, Autumn 2023

Thomas Tauris

Summary

Recyling MSPs – accretion physics

- Detailed LMXB evolution
 - dependence on P_{orb} and M_2
 - relation between M_{WD} and P_{orb} for binary pulsars
 - mass-transfer rate; final neutron star mass
 - equilibrium spin period and spin-up line in P-P_{dot} diagram
- Accretion physics
 - Four phases of accretion
 - Accretion disks
 - Accretion-induced magnetic field decay

Programme

* Introduction

* Degenerate Fermi Gases

Non-relativistic and extreme relativistic electron / (n,p,e⁻) gases

White Dwarfs

Structure, cooling models, observations

* Neutron Stars

Structure and equation-of-state

* Radio Pulsars

Characteristics, spin evolution, magnetars, observations, timing

* Binary Evolution and Interactions

X-ray binaries, accretion, formation of millisecond pulsars, recycling

* Black Holes

Observations, characteristics and spins

- Gravitational Waves
 Sources and detection, kilonovae
- * Exam

Aalborg, Autumn 2023

Physics of Compact Objects week 8

Shapiro & Teukolsky (1983), Wiley-Interscience

Curriculum

- Tauris & van den Heuvel (2023), Chapter 7.3 + 14 (S&T Chapter 18)

Next lecture: McClintock et al. (2013) Tauris & van den Heuvel (2023) (Shapiro & Teukolsky Chapter 12 (14)) (Fabian & Lasenby 2015) Aud.5.227

Exercises: # 13, 15, 19

- Monday Oct. 30, 10:15-12:00